
Analyzing large radar datasets using Python

Robert Jackson1, Scott Collis1, Zach Sherman1, Giri Palanisamy2, Scott 
Giangrande3, Jitendra Kumar2, Joseph Hardin4

UCAR Software Engineering Assembly 2018, 
April 2, 2018

Boulder, CO

1. Argonne National Laboratory, Argonne, IL
2. Oak Ridge National Laboratory, Oak Ridge, TN 
3. Brookhaven National Laboratory, Upton, NY 
4. Pacific Northwest National Laboratory, Richland, WA 



● Ground based scanning radars collects years of data:

– Datasets useful for statistical analysis of convection, GCM validation

● Datasets are on order of >100,000 files, >10 TB of data:

– Need to map radar processing onto supercomputing cluster

● Tools exist in Python to map problem to supercomputing cluster.

Which tools do we use?

Motivation



 The Python ARM Radar Toolkit, Py-ART, is an open source Python 

module containing a growing collection of weather radar algorithms 

and utilities build on top of the Scientific Python stack and 

distributed under the 3-Clause BSD license.

 Py-ART is used by the Atmospheric Radiation Measurement (ARM) 

Climate Research Facility and by others in the scientific community 

for working with data from a number of weather radars and 

instruments.

 Py-ART is open source and hosted on GitHub at http://arm-

doe.github.io/pyart/

The Python ARM Radar Toolkit: Py-ART 

http://arm-doe.github.io/pyart/


The Python ARM Radar Toolkit: Py-ART 



● Python ARM Radar Toolkit/CSU Radar Tools used for visualization, 

processing

CMAC2.0 processes data + provides quicklooks from XSAPR @ ARM 

SGP:

Corrected Moments in Antenna Coordinates 2.0

Operation Methodology

Hydrometeor ID CSU fuzzy logic

Clutter filter Texture + reflectivity stats

Phase processing Giangrande et al. (2014)

Dealiasing Region based from Py-ART

Attenuation correction Gu et al (2011) Z-phi

Rainfall rate retrieval Ryzhkov et al. (2014)



CMAC2.0 quicklooks

CMAC2.0 available at: https://github.com/EVS-ATMOS/cmac2.0



Stratus cluster

Cluster hosted at Oak Ridge National Laboratory 
• 1080-core computing cluster for ARM investigators and 

users of ARM data
• 241-node Cray cluster w/7.68 GB DDR4 memory per 

core. 
• Two Intel Xeon E5-2697V4 processors/core (18 cores per 

processor, 36 cores per node). 
• 57.6 TB fast Solid State Drive (SSD) storage 
• 100 TB parallel Lustre filesystem storage.



Node Node Node Node Node Node

MapReduce

CMAC2.0

Radar file 
@ t0

Radar file 
@ t1

Radar 
file @ t2

Radar 
file @ t3

Radar 
file @ t4

Radar 
file @ tn

Desired statistics



Designed to interact with NumPy/SciPy/Pandas.

Advantages:

• Easy integration w/CMAC2.0 using a bag to do MapReduce.

• Low overhead/latency

Disadvantages:

• Limited to Python, no high level optimization

Dask

Source: dask documentation



import dask.bag as db

from distributed import Client

client = Client(scheduler_file=‘myfile.json’)

the_bag = db.from_sequence(radar_files)

run_cmac = lambda file_name: 

run_cmac_and_plotting(file_name,sounding_time,args)

result = the_bag.map(run_cmac).compute()

Dask code example (go to notebook)



CMAC2.0 performance (go to dask profiler)

CMAC2.0 run on 1 month (~4200 files) of PPIs of XSAPR i5 data 



Gridding performance - NEXRAD

Gridding run on 4,000 files from KHGX NEXRAD radar using 
Bebop (36 cores/node – 4 GB ram/node). Dask used.



Example of a reduction!

18 years of CPOL data! ETHs > 7 km in 

convection (~250,000 radar files, 4 yrs 9 mos)



Conclusions/Future work

Python can be used to easily processes thousands of radar files within 
hours! 

250,000 radar files analyzed using Python and Dask!

Evaluate performance with quasi-vertical profiles

Contact: rjackson@anl.gov


