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● Ground based scanning radars collects years of data:

– Datasets useful for statistical analysis of convection, GCM validation

● Datasets are on order of >100,000 files, >10 TB of data:

– Need to map radar processing onto supercomputing cluster

● Tools exist in Python to map problem to supercomputing cluster.

Which tools do we use?

Motivation



 The Python ARM Radar Toolkit, Py-ART, is an open source Python 

module containing a growing collection of weather radar algorithms 

and utilities build on top of the Scientific Python stack and 

distributed under the 3-Clause BSD license.

 Py-ART is used by the Atmospheric Radiation Measurement (ARM) 

Climate Research Facility and by others in the scientific community 

for working with data from a number of weather radars and 

instruments.

 Py-ART is open source and hosted on GitHub at http://arm-

doe.github.io/pyart/

The Python ARM Radar Toolkit: Py-ART 

http://arm-doe.github.io/pyart/


The Python ARM Radar Toolkit: Py-ART 



● Python ARM Radar Toolkit/CSU Radar Tools used for visualization, 

processing

CMAC2.0 processes data + provides quicklooks from XSAPR @ ARM 

SGP:

Corrected Moments in Antenna Coordinates 2.0

Operation Methodology

Hydrometeor ID CSU fuzzy logic

Clutter filter Texture + reflectivity stats

Phase processing Giangrande et al. (2014)

Dealiasing Region based from Py-ART

Attenuation correction Gu et al (2011) Z-phi

Rainfall rate retrieval Ryzhkov et al. (2014)



CMAC2.0 quicklooks

CMAC2.0 available at: https://github.com/EVS-ATMOS/cmac2.0



Stratus cluster

Cluster hosted at Oak Ridge National Laboratory 
• 1080-core computing cluster for ARM investigators and 

users of ARM data
• 241-node Cray cluster w/7.68 GB DDR4 memory per 

core. 
• Two Intel Xeon E5-2697V4 processors/core (18 cores per 

processor, 36 cores per node). 
• 57.6 TB fast Solid State Drive (SSD) storage 
• 100 TB parallel Lustre filesystem storage.
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Designed to interact with NumPy/SciPy/Pandas.

Advantages:

• Easy integration w/CMAC2.0 using a bag to do MapReduce.

• Low overhead/latency

Disadvantages:

• Limited to Python, no high level optimization

Dask

Source: dask documentation



import dask.bag as db

from distributed import Client

client = Client(scheduler_file=‘myfile.json’)

the_bag = db.from_sequence(radar_files)

run_cmac = lambda file_name: 

run_cmac_and_plotting(file_name,sounding_time,args)

result = the_bag.map(run_cmac).compute()

Dask code example (go to notebook)



CMAC2.0 performance (go to dask profiler)

CMAC2.0 run on 1 month (~4200 files) of PPIs of XSAPR i5 data 



Gridding performance - NEXRAD

Gridding run on 4,000 files from KHGX NEXRAD radar using 
Bebop (36 cores/node – 4 GB ram/node). Dask used.



Example of a reduction!

18 years of CPOL data! ETHs > 7 km in 

convection (~250,000 radar files, 4 yrs 9 mos)



Conclusions/Future work

Python can be used to easily processes thousands of radar files within 
hours! 

250,000 radar files analyzed using Python and Dask!

Evaluate performance with quasi-vertical profiles

Contact: rjackson@anl.gov


