

Building a 3rd Generation
Weather-Model System Test Suite

Paul Madden • Tom Henderson

paul.a.madden@noaa.gov

Definitions: Test SuiteDefinitions: Test Suite
● A collection of tests...
● ...that ensures against regression
● ...and gives a definitive pass/fail answer
● ...and automation
● ...and provides a framework.

Definitions: Definitions: SystemSystem Test Suite Test Suite
● Unit tests (e.g. xUnit) – small chunks
● System tests – end-to-end

● Compilers, MPI libraries, batch systems, task
decomposition

● Evaluation
● Run-vs-Baseline
● Run-vs-Run

Definitions: Test-Suite GenerationsDefinitions: Test-Suite Generations

● Gen 0: No tests. Manual tests. TLAR.
● Gen 1: Shell scripts

● Provide some framework and automation
● Grow by accretion/duplication, comprehensible

only by a few experts

● Gen 2: Higher-level languages
● Code re-use, modularity via OO design
● Imperative style

GoalsGoals
● For the code under test...

● Correctness
– Run-vs-Baseline (ability to generate & use baseline)
– Run-vs-Run

● Breadth
– Builds with different compilers, MPI libraries
– Suite to provide Platform Interface

● e.g how to interact with batch system

GoalsGoals
● For the test-suite users...

● Easy to configure and run
● Terse & verbose information in balance
● Test-suite run time & coverage in balance

– “Standard” and “Long” suites
– Use threads for concurrency!

● Fail early

GoalsGoals
● For the test-suite developers...

● Modularity for model and platform
– Model Interface: how to build, how a run signals

success, which output files to compare, etc.
● Code re-use via libraries
● Simplicity for easy support
● Detailed logging for debugging

Design: Dependency-DrivenDesign: Dependency-Driven
● Dependency-driven execution

● Declarative vs imperative
● Top level: define groups of comparable runs

– Depends on: run definitions
● Middle level: define runs

– Depends on: build definitions
● Bottom level: define builds

– Depends on: external build automation system

Design: Dependency-DrivenDesign: Dependency-Driven
suite

build
ifort + openmpi

build
lahey + mvapich

compare_group_1

run
ifort + openmpi
G4 / 10 cores

run
ifort + openmpi

G4 / serial

compare_group_2

run
ifort + openmpi
G5 / 20 cores

run
ifort + openmpi

G5 / serial

compare_group_3

run
lahey + mvapich

G4 / 10 cores

run
lahey + mvapich

G4 / serial

Design: Dependency-DrivenDesign: Dependency-Driven
● Suites depend on compares

● Compares tell suite: pass or fail

● Compares depend on runs
● Runs tell compares: here's my output

● Runs depend on builds
● Builds tell runs: here are executables

● If several runs need a build, let one of them
build it while the others wait

Design: Dependency-DrivenDesign: Dependency-Driven

R

R

R

R

R M

buildmaster buildlocks builds

R

R

R

R

R M

buildmaster

M

buildlocks builds

Design: Dependency-DrivenDesign: Dependency-Driven

R

R

R

R

R M

buildmaster

M

M

buildlocks builds

R

R

R

R

R M

buildmaster

M

M

buildlocks

B

builds

Design: Dependency-DrivenDesign: Dependency-Driven
● Benefits

● No need to worry about order of operations
● Nothing is built or run unless needed
● No need for “if” conditionals in code
● No combinatoric blow-up

● Suite definition
● “arch”: which batch

system, etc. to use
● “compare”: groups

of comparable runs
● Run names are

names of files
containing run
definitions

arch: jet
compare:
 compare_group_1:
 - ifort_openmpi_4_10
 - ifort_openmpi_4_s
 compare_group_2:
 - ifort openmpi_5_20
 - ifort_openmpi_5_s
 compare_group_3:
 - lahey_mvapich_4_10
 - lahey_mvapich_4_s

Design: Composable DefinitionsDesign: Composable Definitions

● Run definition
● filename:

ifort_openmpi_4_10
● “baseline”: baseline

snapshot to store or
compare against

● “build”: build to use
● “namelists”: mods

to apply to runtime
Fortran namelist file

baseline: base_ifort_openmpi
build: ifort_openmpi
namelists:
 cntlnamelist:
 glvl: 4
 nz: 32
 physics: gfs
 queuenamelist:
 computetasks: 10
 maxqueuetime: 00:05:00

Design: Composable DefinitionsDesign: Composable Definitions

Design: Composable DefinitionsDesign: Composable Definitions
● Build definition

● filename:
ifort_openmpi

● Configuration
options map onto
external build
system

arch: intel
mpi: openmpi
par: parallel

create new file:
conf/runs/ifort_openmpi_4_20

extends: ifort_openmpi_4_10
namelists:
 queuenamelist:
 computetasks: 20

modify suite file:
conf/suites/standard

arch: jet
compare:
 compare_group_1:
 - ifort_openmpi_4_20
 - ifort_openmpi_4_10
 - ifort_openmpi_4_s
 compare_group_2:
 - ifort openmpi_5_20
 - ifort_openmpi_5_s
 compare_group_3:
 - lahey_mvapich_4_10
 - lahey_mvapich_4_s

Design: Composable DefinitionsDesign: Composable Definitions

conf/runs/intel_cpu_gfs_10

extends: intel_cpu_gfs
build: intel_cpu_p
namelists:
 queuenamelist:
 computetasks: “10”
 maxqueuetime: “00:05:00”

conf/runs/intel_cpu_gfs

baseline: intel_cpu_gfs
namelists:
 cntlnamelist:
 glvl: 5
 nz: 32
 physics: 'gfs'

conf/builds/intel_cpu_p

arch: intel
hw: cpu
par: parallel

Design: Composable DefinitionsDesign: Composable Definitions

$ nimts show run intel_cpu_gfs_10

conf/builds/intel_cpu_p
 arch: intel
 hw: cpu
 par: parallel
conf/runs/intel_cpu_gfs_10
 baseline: intel_cpu_gfs
 build: intel_cpu_p
 extends: intel_cpu_gfs
 namelists:
 cntlnamelist:
 glvl: 5
 nz: 32
 physics: gfs
 queuenamelist:
 computetasks: 10
 maxqueuetime: 00:05:00

Design: Composable DefinitionsDesign: Composable Definitions

Design: ComparisonsDesign: Comparisons
● Run-vs-run handled via suite definition
● Run-vs-baseline

● nimts baseline produces “baseline” directory
● Run definition defines which baseline the run

should read/write
● Runs compete via mutex system to contribute

their output to baseline for their group
● Presence of a “baseline” directory implies

baseline comparison

Design: Terse vs VerboseDesign: Terse vs Verbose
● Immediate Logger

● Messages appear on console + in log file
● Output from different threads may be

interspersed

● Delayed Logger
● Messages go only to log file
● Extremely verbose e.g. build output
● Delayed logger messages collected & flushed,

access to log file controled by mutex

Design: Multithreaded for SpeedDesign: Multithreaded for Speed
● One thread per compare group / run / build

● Concurrency derived from dependencies

● Each task proceeds when dependencies
are satisfied
● e.g. Comparisons between runs in one

compare group happen as soon as those runs
complete

● Allows early-as-possible failure

● Front-end / compute-node work split

Design: Convention Over ConfigurationDesign: Convention Over Configuration

● Baselines
● Simple presence of “baseline” directory (real or

symlink) implies “compare against baseline”

● Configuration
● Build definitions in conf/builds

– Any filename here can be referred to in a run
definition

● Run definitions in conf/runs
– Any filename here can be referred to in a suite

definition

Design: PortabilityDesign: Portability
● 6 methods define Platform Interface

● Primarily batch-system issues (how to queue,
monitor, delete jobs, etc.)

● 8 methods define Model Interface
● How to prepare an isolated build, syntax of

build command, how to check if a model run
completed, which output files to compare or
store

● Compile/link details left to model's build
system

Model 2

def arch_build_pre(buildspec)
 build=buildspec['build'].squeeze
 buildbase=build.sub(/\s*serial\s*/,'')
 builddir=build.sub(' ','_')
 dstdir=buildspec['buildroot']+'/'+builddir
 FileUtils.mkdir(dstdir)
 logd "Made directory: #{dstdir}"
 n='FIMsrc'
 src=valid_dir(File.expand_path('../../'+n))
 dst=dstdir+'/'+n
 FileUtils.cp_r(src,dst)
 logd "Copied #{src} to #{dst}"
 buildspec['buildsrc']=valid_dir(dst)
 logd "Set build source directory: #{dst}"
 n='FIMrun'
 src=valid_dir(File.expand_path('../../'+n))
 dst=dstdir+'/'+n
 FileUtils.mkdir(dst)
 Dir.glob(src+'/*') do |e|
 FileUtils.cp(e,dst) unless File.directory?(e)
 end
 logd "Copied #{src}/* to #{dst}"
 buildspec['buildrun']=valid_dir(dst)
 logd "Set build run directory: #{dst}"
end

Design: PortabilityDesign: Portability
Model 1

def arch_build_pre(buildspec)
 # no-op
end

ImplementationImplementation
● Driver code in Ruby

● Good maintenance & extension experiences
● Dynamic dispatch, e.g. command-line

arguments translated directly to method calls
● Good libraries like

– Logger: immediate and delayed logs
– Thread: multithreading & mutexes
– YAML: config files
– MD5: test-suite data set verification
– Fortran namelist handler (custom)

Experiences So FarExperiences So Far
● Testing NIM model on two supercomputers
● Adapted test suite to FIM model for

continuous integration tests on new system
● Developers already modifying their own

test suites
● Re-used some components for non-model

test suite
● Goals met

Thanks.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

