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Definitions: Test SuiteDefinitions: Test Suite
● A collection of tests...
● ...that ensures against regression
● ...and gives a definitive pass/fail answer
● ...and automation
● ...and provides a framework.



  

Definitions: Definitions: SystemSystem Test Suite Test Suite
● Unit tests (e.g. xUnit) – small chunks
● System tests – end-to-end

● Compilers, MPI libraries, batch systems, task 
decomposition

● Evaluation
● Run-vs-Baseline
● Run-vs-Run



  

Definitions: Test-Suite GenerationsDefinitions: Test-Suite Generations

● Gen 0: No tests. Manual tests. TLAR.
● Gen 1: Shell scripts 

● Provide some framework and automation
● Grow by accretion/duplication, comprehensible 

only by a few experts

● Gen 2: Higher-level languages
● Code re-use, modularity via OO design
● Imperative style



  

GoalsGoals
● For the code under test...

● Correctness
– Run-vs-Baseline (ability to generate & use baseline)
– Run-vs-Run

● Breadth
– Builds with different compilers, MPI libraries
– Suite to provide Platform Interface

● e.g how to interact with batch system



  

GoalsGoals
● For the test-suite users...

● Easy to configure and run
● Terse & verbose information in balance
● Test-suite run time & coverage in balance

– “Standard” and “Long” suites
– Use threads for concurrency!

● Fail early



  

GoalsGoals
● For the test-suite developers...

● Modularity for model and platform
– Model Interface: how to build, how a run signals 

success, which output files to compare, etc.
● Code re-use via libraries
● Simplicity for easy support
● Detailed logging for debugging



  

Design: Dependency-DrivenDesign: Dependency-Driven
● Dependency-driven execution

● Declarative vs imperative
● Top level: define groups of comparable runs

– Depends on: run definitions
● Middle level: define runs

– Depends on: build definitions
● Bottom level: define builds

– Depends on: external build automation system



  

Design: Dependency-DrivenDesign: Dependency-Driven
suite
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Design: Dependency-DrivenDesign: Dependency-Driven
● Suites depend on compares

● Compares tell suite: pass or fail

● Compares depend on runs
● Runs tell compares: here's my output

● Runs depend on builds
● Builds tell runs: here are executables

● If several runs need a build, let one of them 
build it while the others wait



  

Design: Dependency-DrivenDesign: Dependency-Driven
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Design: Dependency-DrivenDesign: Dependency-Driven
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Design: Dependency-DrivenDesign: Dependency-Driven
● Benefits

● No need to worry about order of operations
● Nothing is built or run unless needed
● No need for “if” conditionals in code
● No combinatoric blow-up



  

● Suite definition
● “arch”: which batch 

system, etc. to use
● “compare”: groups 

of comparable runs
● Run names are 

names of files 
containing run 
definitions

arch: jet
compare:
  compare_group_1:
    - ifort_openmpi_4_10
    - ifort_openmpi_4_s
  compare_group_2:
    - ifort openmpi_5_20
    - ifort_openmpi_5_s
  compare_group_3:
    - lahey_mvapich_4_10
    - lahey_mvapich_4_s

Design: Composable DefinitionsDesign: Composable Definitions



  

● Run definition
● filename: 

ifort_openmpi_4_10
● “baseline”: baseline 

snapshot to store or 
compare against

● “build”: build to use
● “namelists”: mods 

to apply to runtime 
Fortran namelist file

baseline: base_ifort_openmpi
build: ifort_openmpi
namelists:
  cntlnamelist:
    glvl: 4
    nz: 32
    physics: gfs
  queuenamelist:
    computetasks: 10
    maxqueuetime: 00:05:00

Design: Composable DefinitionsDesign: Composable Definitions



  

Design: Composable DefinitionsDesign: Composable Definitions
● Build definition

● filename: 
ifort_openmpi

● Configuration 
options map onto 
external build 
system

arch: intel
mpi: openmpi
par: parallel



  

create new file:
conf/runs/ifort_openmpi_4_20

extends: ifort_openmpi_4_10
namelists:
  queuenamelist:
    computetasks: 20

modify suite file:
conf/suites/standard

arch: jet
compare:
  compare_group_1:
    - ifort_openmpi_4_20
    - ifort_openmpi_4_10
    - ifort_openmpi_4_s
  compare_group_2:
    - ifort openmpi_5_20
    - ifort_openmpi_5_s
  compare_group_3:
    - lahey_mvapich_4_10
    - lahey_mvapich_4_s

Design: Composable DefinitionsDesign: Composable Definitions



  

conf/runs/intel_cpu_gfs_10

extends: intel_cpu_gfs
build: intel_cpu_p
namelists:
  queuenamelist:
    computetasks: “10”
    maxqueuetime: “00:05:00”

conf/runs/intel_cpu_gfs

baseline: intel_cpu_gfs
namelists:
  cntlnamelist:
    glvl: 5
    nz: 32
    physics: 'gfs'

conf/builds/intel_cpu_p

arch: intel
hw: cpu
par: parallel

Design: Composable DefinitionsDesign: Composable Definitions



  

$ nimts show run intel_cpu_gfs_10

conf/builds/intel_cpu_p
  arch: intel
  hw: cpu
  par: parallel
conf/runs/intel_cpu_gfs_10
  baseline: intel_cpu_gfs
  build: intel_cpu_p
  extends: intel_cpu_gfs
  namelists: 
    cntlnamelist: 
      glvl: 5
      nz: 32
      physics: gfs
    queuenamelist: 
      computetasks: 10
      maxqueuetime: 00:05:00

Design: Composable DefinitionsDesign: Composable Definitions



  

Design: ComparisonsDesign: Comparisons
● Run-vs-run handled via suite definition
● Run-vs-baseline

● nimts baseline produces “baseline” directory
● Run definition defines which baseline the run 

should read/write
● Runs compete via mutex system to contribute 

their output to baseline for their group
● Presence of a “baseline” directory implies 

baseline comparison



  

Design: Terse vs VerboseDesign: Terse vs Verbose
● Immediate Logger

● Messages appear on console + in log file
● Output from different threads may be 

interspersed

● Delayed Logger
● Messages go only to log file
● Extremely verbose e.g. build output
● Delayed logger messages collected & flushed, 

access to log file controled by mutex



  

Design: Multithreaded for SpeedDesign: Multithreaded for Speed
● One thread per compare group / run / build

● Concurrency derived from dependencies

● Each task proceeds when dependencies 
are satisfied
● e.g. Comparisons between runs in one 

compare group happen  as soon as those runs 
complete

● Allows early-as-possible failure

● Front-end / compute-node work split



  

Design: Convention Over ConfigurationDesign: Convention Over Configuration

● Baselines
● Simple presence of “baseline” directory (real or 

symlink) implies “compare against baseline”

● Configuration
● Build definitions in conf/builds

– Any filename here can be referred to in a run 
definition

● Run definitions in conf/runs
– Any filename here can be referred to in a suite 

definition



  

Design: PortabilityDesign: Portability
● 6 methods define Platform Interface

● Primarily batch-system issues (how to queue, 
monitor, delete jobs, etc.)

● 8 methods define Model Interface
● How to prepare an isolated build, syntax of 

build command, how to check if a model run 
completed, which output files to compare or 
store

● Compile/link details left to model's build 
system



  

Model 2

def arch_build_pre(buildspec)
  build=buildspec['build'].squeeze
  buildbase=build.sub(/\s*serial\s*/,'')
  builddir=build.sub(' ','_')
  dstdir=buildspec['buildroot']+'/'+builddir
  FileUtils.mkdir(dstdir)
  logd "Made directory: #{dstdir}"
  n='FIMsrc'
  src=valid_dir(File.expand_path('../../'+n))
  dst=dstdir+'/'+n
  FileUtils.cp_r(src,dst)
  logd "Copied #{src} to #{dst}"
  buildspec['buildsrc']=valid_dir(dst)
  logd "Set build source directory: #{dst}"
  n='FIMrun'
  src=valid_dir(File.expand_path('../../'+n))
  dst=dstdir+'/'+n
  FileUtils.mkdir(dst)
  Dir.glob(src+'/*') do |e|
    FileUtils.cp(e,dst) unless File.directory?(e)
  end
  logd "Copied #{src}/* to #{dst}"
  buildspec['buildrun']=valid_dir(dst)
  logd "Set build run directory: #{dst}"
end

Design: PortabilityDesign: Portability
Model 1

def arch_build_pre(buildspec)
  # no-op
end



  

ImplementationImplementation
● Driver code in Ruby

● Good maintenance & extension experiences
● Dynamic dispatch, e.g. command-line 

arguments translated directly to method calls
● Good libraries like

– Logger: immediate and delayed logs
– Thread: multithreading & mutexes
– YAML: config files
– MD5: test-suite data set verification
– Fortran namelist handler (custom)



  

Experiences So FarExperiences So Far
● Testing NIM model on two supercomputers
● Adapted test suite to FIM model for 

continuous integration tests on new system
● Developers already modifying their own 

test suites
● Re-used some components for non-model 

test suite
● Goals met



  

Thanks.
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