
Modular Software Building
with Python SCons

SEA Conference

February 21, 2012

Gary Granger

NCAR, Earth Observing Laboratory

Feb 21, 2012 SEA Conference 2

Build System Goals

• Modular
– Change how a module is built without changing the

builds which depend on it

• Portable
– One build system for multiple platforms which runs

from IDEs and CI tools.

• Extensible
– Build more than programs

• Configurable
– Let developer define and configure build options

Feb 21, 2012 SEA Conference 3

SCons Key Points

• Definition and procedure in one powerful
scripting language: python

• Build configuration divided into modular
tools, including C, C++, Java, FORTRAN...

• One complete dependency tree assembled
from build scripts in sub-trees

• Cross-platform: tool scripts can be portable
across OS's because python is portable

Feb 21, 2012 SEA Conference 4

SConscript Example

env = Environment(tools = ['default', 'log4cpp'])

sources = Split("""Logging.cc ...""")

objects = env.Object(sources)

lib = env.Library('logx', objects)

env.Default(lib)

Feb 21, 2012 SEA Conference 5

SConscript Basics
Environment: Construction variables,

methods, context

Builders: Run commands to generate
TARGETS from SOURCES

Tools: Extend the Environment with
new builders and modify
construction variables

Virtual Filesystem: All nodes have a path
even before they exist

Feb 21, 2012 SEA Conference 6

SCons Build Phases

SCons does not execute the SConscript to
build the targets:

1.Read all of the SConscript files and execute
them to build the dependency tree and
configure the builders.

2.Run the build engine to analyze
dependencies and update the default or
explicit targets.

Feb 21, 2012 SEA Conference 7

SCons Distinctions

• Strict Environment

• Careful and thorough dependencies
– scanners for implicit dependencies

– implicit executables

– checksums and not just timestamps

• Developer-defined build Variables

• Autoconf-like compiler and linker checks

• Parser for pkg-config and similar scripts

• Parallel builds

• Source code control interfaces

Feb 21, 2012 SEA Conference 8

EOL SCons

• eol_scons package loaded automatically by
site_scons in top level directory

• Custom tools

• Module tools within the source tree

• Wrapper Environment methods

• Build Variables

• Global Target References

• Optimizations

Feb 21, 2012 SEA Conference 9

boost_date_time.py

def generate(env):

 env.Append(LIBS=['boost_date_time',])

 libpath = os.path.abspath(os.path.join(

 env['OPT_PREFIX'],'lib'))

 env.AppendUnique(LIBPATH=[libpath])

Feb 21, 2012 SEA Conference 10

tool_logx.py

def logx(env):

 lib = env.GetGlobalTarget('liblogx')

 env.Append(LIBS=[lib,])

 env.AppendUnique(CPPPATH =
 Dir('.').abspath)

 env.AppendDoxref(doxref[0])

 env.Require(['log4cpp'])

Export('logx')

Feb 21, 2012 SEA Conference 11

Source Tool Example
aeros/

 SConstruct:

 env = Environment(tools = ['default'])

 SConscript('datastore/SConscript')

 site_scons [svn:external]

 site_scons/site_tools/netcdf.py

 logx [svn:external]

 logx/tool_logx.py:

 def logx(env):

 datastore/SConscript:

 env = Environment(tools = ['logx'])

Feb 21, 2012 SEA Conference 12

Test Wrapper Method

def Test (self, sources, actions):
 xtest = self.Command("xtest", sources,

 actions)

 self.Precious(xtest)

 self.AlwaysBuild(xtest)

 DefaultEnvironment().Alias('test', xtest)

 return xtest

Feb 21, 2012 SEA Conference 13

Optimization: rerun.py

env = Environment(tools = ['default', 'rerun'])

if env.Rerun():

 Return()

> scons rerun=1

Feb 21, 2012 SEA Conference 14

Build Variables

Config file:

 QWTDIR="/opt/local/qwt-6.0.1-svn"

 NIDAS_PATH="/opt/local/nidas"

 OPT_PREFIX="/opt/local/aeros-qt4"

 COIN_DIR="/opt/local/Coin-3.1.3"

 buildmode="debug"

Command line:

 scons buildmode=debug

Feb 21, 2012 SEA Conference 15

Further Developments

• SCons interactive mode

• More cross-platform work to do, especially
cross-platform tests

• Consolidate test harness scripting, such as
running valgrind and analyzing output

• “Next-level integration”: multiple EOL
projects all built together

• Using the build engine for data processing

Feb 21, 2012 SEA Conference 16

SCons and Best Practices

• Build the entire source tree and unit tests in
one command, with a single build system

• Careful about repeatable builds

• Reusable build configuration scripts for
reusable software libraries

• Incorporate standard build products like
version headers and documentation

• Software distributions

• Consistent application of compiler flags

Feb 21, 2012 SEA Conference 17

SCons Drawbacks

• Performance and scalability

• Internal Python can be complex

– Hard to track down how build commands are generated

– Some mysterious bugs

– Confusion over differences with Make

• More platform-specific coding than we might like

• Learning curve in how to extend or where to insert hooks, but
no more than other systems

• Non-mainstream build system hinders code sharing

Feb 21, 2012 SEA Conference 18

Conclusion

SCons is a welcome evolution towards a
modular build system, in regular use in
several EOL software projects, and I see no
reason to turn back.

SCons: www.scons.org

Email: granger@ucar.edu

NCAR is supported by the National Science Foundation.

http://www.scons.org/
mailto:granger@ucar.edu

	EOL Template Title Slide
	All Other Slides
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Last Slide

