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Myths in Computing Science

• To get performance, reliability must be 
sacrificed 

• To gain reliability, performance must be 
sacrificed

• It is very difficult, if not impossible, to 
eliminate single-point failures



A true solution for ANY is the solution to ALL.

Impossible Triangle

Scalable Performance
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Extreme Scale Applications

• Exascale Computing

• Big Data Processing



The First Principle in Extreme Scale 
Software Engineering

Ability to Harness Volatile Resources



Theoretical Limits

• Perfect data communication is impossible if 
the probability of component failure is greater 
than zero [Lynch 1993].

• Statistic Multiplexing or packet switching 
[Baran 1960] enabled harnessing resource 
volatility for data networks.

http://dl.acm.org/citation.cfm?id=169676
http://www.rand.org/pubs/research_memoranda/RM3764/RM3764.list.html


Architecture Dichotomy

• For data communication architectures, adding 
routers and switches enhances performance and 
reliability at the same time. Scalability has no 
limit.

• For distributed (and parallel) computer 
architectures, adding nodes can either enhance 
performance or reliability, not both. Scalability is 
challenged.

• Observation: All applications are built using 
scalable data networks. What went wrong?



In Search for the Weakest Link

• All distributed and parallel application 
programming interfaces (API) assume reliable 
application-level communication.

• Operating system hands off all communication 
tasks to the protocol stack.

• Communication stack can be characterized in 
7 layers (OSI).(regardless actual 
implementations)



The Imperfect (OSI) Layers
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Why Explicit Parallelism is Bad?

• The protocol stack is processed on the host computers. 
The media layers are built-in the network adaptor.

• The network adaptor make sure that the data plane is 
intact regardless component failures.

• The host layers are processed by the host processor. 
Any transient failure on the path of packet-
>application-level processing can hang the entire 
application.

• Bigger applications deploy more processing nodes. The 
probability of failure increases proportionally as we 
up scale the application.



The “Smoking Gun”
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Effects of Cumulative Transient Errors

• Transient failures are the primary reasons for 
application and storage failures.

• The number of failures cumulates as we up 
scale the complexities of software and 
hardware.

Fact Check: The MTBF for a multiprocessor of 
1024 nodes is shrinking to less than 60 minutes 
[Gibson2007]. http://www.pdsi-scidac.org/

http://www.pdl.cmu.edu/PDL-FTP/associated/dsn06.pdf
http://www.pdsi-scidac.org/


Between “Refresh button” and Single-
point Failures

• Question: What would be your Internet 
experience, if the refresh button is removed?

• What really happens when you push the 
refresh button?

It eliminates ALL single-point failures. 



Lessons from History

• The Internet today is not a result of 
incremental improvements over circuit-
switching networks.

• A paradigm shift, packet switching, was 
necessary.

• Analogy: Explicit parallel paradigms are 
building one off “circuit-switching” networks.



Architecture Objective
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Architecture Engineering

• Statistic Multiplexed Computing Architectures 
(SMCA): there Must be multiple paths for 
processing the same task (definition of 
mission apps?)

• Structural support for temporal and spatial 
redundancies to exploit all possible volatile 
hardware/software components.

• Must eliminate the reliable communication 
assumption in ALL APIs (timeout discipline)



Devils are in the Details

• All APIs must include SMCA semantics: re-
transmission on timeout with uniqueness 
check (what do we teach students about 
timeout?)

• Infrastructure must support SMCA semantics: 
store-and-forward (remember the 55yr old 
debate?)

• What about the impossibilities in CAP 
Theorem?

http://www.computer.org/portal/web/computingnow/0312/whatsnew/computer


2 Application Types

• Compute Intensive (CI): Not every state 
change needs to be saved. Example: HPC apps.

• Data Intensive (DI): Every data state change 
needs to be recorded permanently. Example: 
Transaction Processing, Data Storage.



CI: A Blueprint for Exascale HPC

Tuple-Switching Network (implicit data parallel)

Automatic Data Reduction Machine

http://dl.acm.org/citation.cfm?id=2369661


How It Works

• Applications are decomposed into data-parallel 
segments.

• A Master generates working tuples for processing.
• Workers are automatically generated on multiple 

nodes to process different tuples.
• The Master collects the results when done.
• Only Master needs checkpoints (O(1)). Workers (O(p)) 

are automatically protected by SMCA tuple re-
transmission mechanism.

• Performance is tunable by changing granularity 
(umesh?).

http://spartan.cis.temple.edu/synergy/


Computational Results

Higher volatility = Higher performance



The Second Principle in HPC Software 
Engineering

• Parallel programs must be tunable after 
compilation.

• Otherwise, it is impossible to expect high 
performance from the same code in different 
processing environments.

• Explicit parallel and functional programming 
paradigms have violated the second principle.



Why the Laws are Not Useful

• Amdahl’s and Gustafson’s Laws: single measure of 
parallel v.s. sequential percentage.

• They are related.

• Question: How can you predict application 
scalability without quantifying communication?

• Timing analysis (software engineer’s slipstick) 
shows each application is only limited to scale to 
whatever the processing architecture can 
support.

http://en.wikipedia.org/wiki/Amdahl's_law
http://en.wikipedia.org/wiki/Gustafson's_Law
http://spartan.cis.temple.edu/shi/public_html/docs/amdahl/amdahl.html
http://www.sciencedirect.com/science/article/pii/S0743731599915496


DI: The CAP Confusion

• Eric Brewer proposed the CAP conjecture in 
2000: One can only expect at most two of the 
three desirable properties for a (data 
intensive) web service: data consistency, 
availability and (network) partition tolerance.

• In 2002, Gibert and Lynch published an 
informal proof of CAP. It is now called the CAP 
Theorem.

http://lpd.epfl.ch/sgilbert/pubs/BrewersConjecture-SigAct.pdf
http://www.computer.org/portal/web/computingnow/0312/whatsnew/computer


CA, CP or AP?

• Data consistency was the first to be sacrificed. 
Google led the charge: GFS.

• NoSQL, Casandra, StreamDB, MongoDB, etc.

• Question: Can consistency relaxed data 
sources be used for mission critical apps?



Single Difficulty: Replication

Current industry standards: 

• Synchronous with 2PC protocol 

• Asynchronous

http://research.microsoft.com/apps/pubs/default.aspx?id=68247


The Story of 1+1 < 1

• Synchronous Replication with 2PC:

• 2 Servers deliver less than 1 server’s 
performance.

• 2 servers deliver less than 1 server’s availability.



The Story of 1+1 (cont)

• Asynchronous Replication:

• 2 servers deliver less than 1 server’s 
performance.

• 2 servers delivers less than 1 server’s reliability.



2 Curious Assumptions in CAP

• Arbitrary message loss

• Atomic replication with 2PC

Why?



Arbitrary Message Loss

• Transaction processing API assume reliable 
transaction processing -> every transaction is 
only transmitted once. Thus in theory, 
transaction loss cannot be prevented (like 
UDP).

• Observation: Only statistic multiplexing 
transaction can eliminate arbitrary losses.



Synchronous Replication with 2PC

• Failure in any replication target will cause the 
transaction to rollback.

• Observation: Every target server’s state is 
semantically acceptable to all apps. Why 
throw the baby out with the bath water?



Necessary Condition

• For trustworthy data intensive applications, 
data consistency is the necessary condition.

• The same condition is necessary for statistic 
multiplexed DI computing architecture.



Reality Check

• Database engines all serve as the concurrent 
update conflict resolver while replicating 
(federated then serialized).

• Question: Since either the primary or the 
secondary is equally likely to be responsible 
for data inconsistencies, why artificially 
appoint a “primary”?



Statistic Multiplexing DI Architecture
(counter intuitive)

User
GW

DB1 DB2 DBn

(DBx Architecture)

Timeout Discipline

Sync Rep, Non-stop Resync

http://www.pcticorp.com/


Single-point Failure?

• No problem, if all clients are timeout 
disciplined (automated re-fresh button)



Unlimited DI Performance?

• Storage overhead is the ultimate performance 
bottleneck for all DI applications.

• Data partitioning is the proven load 
distribution method (with a catch: every new 
server is a new single-point failure)

• Solution: P >> R

• You can add servers indefinitely by keeping a 
small R.



Inductive Experiments



Broad Impacts

• Exascale Computing

• Internet-sized Big Data Processing

• Internet-sized Storage Networks

• Lossless Transaction Processing Networks

• Lossless Service Oriented Architectures (SOA)

• Mission Critical Applications

• … and the way we teach CS
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Request for Collaborators

• Looking for collaborators for the upcoming 
SC13 (Denver, Nov) research exhibit

– Compute intensive apps (collaboration for a demo 
app)

– Data intensive apps (collaboration on the 
development of P2PHDFS project)

• Contact: shi@temple.edu

mailto:shi@temple.edu
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