
Statistic Multiplexed Computing
(SMC) – The Neglected Path to

Unlimited Application Scalability

Justin Y. Shi | shi@temple.edu

April 2, 2013

Software Engineering Assembly
NCAR | Boulder | CO

mailto:shi@temple.edu

Myths in Computing Science

• To get performance, reliability must be
sacrificed

• To gain reliability, performance must be
sacrificed

• It is very difficult, if not impossible, to
eliminate single-point failures

A true solution for ANY is the solution to ALL.

Impossible Triangle

Scalable Performance

Agenda

• The First Principle of Extreme Scale Applications
• The “Smoking Gun”: Why explicit parallel programs are hard to

scale?
• The “refresh button” and elimination of single-point failure
• SMCA for Compute Intensive Applications

– Why Amdahl’s and Gustafson’s Laws are not useful
– Timing Model: A Software Engineer’s slipstick
– A Blueprint for Exascale Processors
– The Second principle of extreme scale HPC application engineering

• SMCA for Data Intensive Applications
– CAP Theorem and Two Curious Assumptions
– A Blueprint for Internet-sized Data Intensive Processor
– Inductive computational results

• Summary and Q/A

Extreme Scale Applications

• Exascale Computing

• Big Data Processing

The First Principle in Extreme Scale
Software Engineering

Ability to Harness Volatile Resources

Theoretical Limits

• Perfect data communication is impossible if
the probability of component failure is greater
than zero [Lynch 1993].

• Statistic Multiplexing or packet switching
[Baran 1960] enabled harnessing resource
volatility for data networks.

http://dl.acm.org/citation.cfm?id=169676
http://www.rand.org/pubs/research_memoranda/RM3764/RM3764.list.html

Architecture Dichotomy

• For data communication architectures, adding
routers and switches enhances performance and
reliability at the same time. Scalability has no
limit.

• For distributed (and parallel) computer
architectures, adding nodes can either enhance
performance or reliability, not both. Scalability is
challenged.

• Observation: All applications are built using
scalable data networks. What went wrong?

In Search for the Weakest Link

• All distributed and parallel application
programming interfaces (API) assume reliable
application-level communication.

• Operating system hands off all communication
tasks to the protocol stack.

• Communication stack can be characterized in
7 layers (OSI).(regardless actual
implementations)

The Imperfect (OSI) Layers

Host
layers

Data unit Layer Function

Data

7. Application Network process to application

6. Presentation
Data representation, encryption and decryption,
convert machine dependent data to machine
independent data

5. Session
Interhost communication, managing sessions
between applications

Media

layers

Segments 4. Transport
End-to-end connections, reliability and flow
control

Packet/Datagram 3. Network Path determination and logical addressing

Frame 2. Data link Physical addressing

Bit 1. Physical Media, signal and binary transmission

Why Explicit Parallelism is Bad?

• The protocol stack is processed on the host computers.
The media layers are built-in the network adaptor.

• The network adaptor make sure that the data plane is
intact regardless component failures.

• The host layers are processed by the host processor.
Any transient failure on the path of packet-
>application-level processing can hang the entire
application.

• Bigger applications deploy more processing nodes. The
probability of failure increases proportionally as we
up scale the application.

The “Smoking Gun”

Host
layers

Data unit Layer Function
API

Vulnerability

Data

7. Application Network process to application

6. Presentation
Data representation, encryption and
decryption, convert machine dependent
data to machine independent data

5. Session
Interhost communication, managing
sessions between applications

Media

layers

Segments 4. Transport
End-to-end connections, reliability
and flow control

Packet/Datagram 3. Network Path determination and logical addressing

Frame 2. Data link Physical addressing

Bit 1. Physical Media, signal and binary transmission

Effects of Cumulative Transient Errors

• Transient failures are the primary reasons for
application and storage failures.

• The number of failures cumulates as we up
scale the complexities of software and
hardware.

Fact Check: The MTBF for a multiprocessor of
1024 nodes is shrinking to less than 60 minutes
[Gibson2007]. http://www.pdsi-scidac.org/

http://www.pdl.cmu.edu/PDL-FTP/associated/dsn06.pdf
http://www.pdsi-scidac.org/

Between “Refresh button” and Single-
point Failures

• Question: What would be your Internet
experience, if the refresh button is removed?

• What really happens when you push the
refresh button?

It eliminates ALL single-point failures.

Lessons from History

• The Internet today is not a result of
incremental improvements over circuit-
switching networks.

• A paradigm shift, packet switching, was
necessary.

• Analogy: Explicit parallel paradigms are
building one off “circuit-switching” networks.

Architecture Objective

 0.84

 0.86

 0.88

 0.90

 0.92

 0.94

 0.96

 0.98

 1.00

 1.02

 -

 1.00

 2.00

 3.00

 4.00

 5.00

 6.00

 7.00

 8.00

 9.00

 10.00

1 2 3 4 5 6 7 8 9 10

Performance Reliability

(P)

(SP) % Uptime

 -

 0.10

 0.20

 0.30

 0.40

 0.50

 0.60

 0.70

 0.80

 0.90

 1.00

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

Performance Reliability

(P)
 0.84

 0.86

 0.88

 0.90

 0.92

 0.94

 0.96

 0.98

 1.00

 1.02

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

Performance Reliability

(P

(SP
)

%
Uptime

Architecture Engineering

• Statistic Multiplexed Computing Architectures
(SMCA): there Must be multiple paths for
processing the same task (definition of
mission apps?)

• Structural support for temporal and spatial
redundancies to exploit all possible volatile
hardware/software components.

• Must eliminate the reliable communication
assumption in ALL APIs (timeout discipline)

Devils are in the Details

• All APIs must include SMCA semantics: re-
transmission on timeout with uniqueness
check (what do we teach students about
timeout?)

• Infrastructure must support SMCA semantics:
store-and-forward (remember the 55yr old
debate?)

• What about the impossibilities in CAP
Theorem?

http://www.computer.org/portal/web/computingnow/0312/whatsnew/computer

2 Application Types

• Compute Intensive (CI): Not every state
change needs to be saved. Example: HPC apps.

• Data Intensive (DI): Every data state change
needs to be recorded permanently. Example:
Transaction Processing, Data Storage.

CI: A Blueprint for Exascale HPC

Tuple-Switching Network (implicit data parallel)

Automatic Data Reduction Machine

http://dl.acm.org/citation.cfm?id=2369661

How It Works

• Applications are decomposed into data-parallel
segments.

• A Master generates working tuples for processing.
• Workers are automatically generated on multiple

nodes to process different tuples.
• The Master collects the results when done.
• Only Master needs checkpoints (O(1)). Workers (O(p))

are automatically protected by SMCA tuple re-
transmission mechanism.

• Performance is tunable by changing granularity
(umesh?).

http://spartan.cis.temple.edu/synergy/

Computational Results

Higher volatility = Higher performance

The Second Principle in HPC Software
Engineering

• Parallel programs must be tunable after
compilation.

• Otherwise, it is impossible to expect high
performance from the same code in different
processing environments.

• Explicit parallel and functional programming
paradigms have violated the second principle.

Why the Laws are Not Useful

• Amdahl’s and Gustafson’s Laws: single measure of
parallel v.s. sequential percentage.

• They are related.

• Question: How can you predict application
scalability without quantifying communication?

• Timing analysis (software engineer’s slipstick)
shows each application is only limited to scale to
whatever the processing architecture can
support.

http://en.wikipedia.org/wiki/Amdahl's_law
http://en.wikipedia.org/wiki/Gustafson's_Law
http://spartan.cis.temple.edu/shi/public_html/docs/amdahl/amdahl.html
http://www.sciencedirect.com/science/article/pii/S0743731599915496

DI: The CAP Confusion

• Eric Brewer proposed the CAP conjecture in
2000: One can only expect at most two of the
three desirable properties for a (data
intensive) web service: data consistency,
availability and (network) partition tolerance.

• In 2002, Gibert and Lynch published an
informal proof of CAP. It is now called the CAP
Theorem.

http://lpd.epfl.ch/sgilbert/pubs/BrewersConjecture-SigAct.pdf
http://www.computer.org/portal/web/computingnow/0312/whatsnew/computer

CA, CP or AP?

• Data consistency was the first to be sacrificed.
Google led the charge: GFS.

• NoSQL, Casandra, StreamDB, MongoDB, etc.

• Question: Can consistency relaxed data
sources be used for mission critical apps?

Single Difficulty: Replication

Current industry standards:

• Synchronous with 2PC protocol

• Asynchronous

http://research.microsoft.com/apps/pubs/default.aspx?id=68247

The Story of 1+1 < 1

• Synchronous Replication with 2PC:

• 2 Servers deliver less than 1 server’s
performance.

• 2 servers deliver less than 1 server’s availability.

The Story of 1+1 (cont)

• Asynchronous Replication:

• 2 servers deliver less than 1 server’s
performance.

• 2 servers delivers less than 1 server’s reliability.

2 Curious Assumptions in CAP

• Arbitrary message loss

• Atomic replication with 2PC

Why?

Arbitrary Message Loss

• Transaction processing API assume reliable
transaction processing -> every transaction is
only transmitted once. Thus in theory,
transaction loss cannot be prevented (like
UDP).

• Observation: Only statistic multiplexing
transaction can eliminate arbitrary losses.

Synchronous Replication with 2PC

• Failure in any replication target will cause the
transaction to rollback.

• Observation: Every target server’s state is
semantically acceptable to all apps. Why
throw the baby out with the bath water?

Necessary Condition

• For trustworthy data intensive applications,
data consistency is the necessary condition.

• The same condition is necessary for statistic
multiplexed DI computing architecture.

Reality Check

• Database engines all serve as the concurrent
update conflict resolver while replicating
(federated then serialized).

• Question: Since either the primary or the
secondary is equally likely to be responsible
for data inconsistencies, why artificially
appoint a “primary”?

Statistic Multiplexing DI Architecture
(counter intuitive)

User
GW

DB1 DB2 DBn

(DBx Architecture)

Timeout Discipline

Sync Rep, Non-stop Resync

http://www.pcticorp.com/

Single-point Failure?

• No problem, if all clients are timeout
disciplined (automated re-fresh button)

Unlimited DI Performance?

• Storage overhead is the ultimate performance
bottleneck for all DI applications.

• Data partitioning is the proven load
distribution method (with a catch: every new
server is a new single-point failure)

• Solution: P >> R

• You can add servers indefinitely by keeping a
small R.

Inductive Experiments

Broad Impacts

• Exascale Computing

• Internet-sized Big Data Processing

• Internet-sized Storage Networks

• Lossless Transaction Processing Networks

• Lossless Service Oriented Architectures (SOA)

• Mission Critical Applications

• … and the way we teach CS

Acknowledgements

• Reported CI architecture research is supported
in part by National Science Foundation (MRI)

• DI architecture research is supported in part
by Ben Franklin Technology Partners and
private investors to Parallel Computers
Technology Inc.

Request for Collaborators

• Looking for collaborators for the upcoming
SC13 (Denver, Nov) research exhibit

– Compute intensive apps (collaboration for a demo
app)

– Data intensive apps (collaboration on the
development of P2PHDFS project)

• Contact: shi@temple.edu

mailto:shi@temple.edu

Q&A

Speaker Bio
Justin Y. Shi is an Associate Professor and Associate
Chairman of Computer and Information Sciences
Department of Temple University. He earned his B.S. in
Computer Engineering from Shanghai Jiaotong
University in 1977, M.S. and Ph.D. in Computer Science
from the University of Pennsylvania in 1983 and 1984
respectively. He was elected Chairman for Computer
and Information Sciences Department from 2007-2009.
He is also the founder and Chairman of Parallel
Computers Technology Inc., an independent research
and development company in King of Prussia,
Pennsylvania. He has consulted for the Department of
Homeland Security and the Department of Human
Services of Philadelphia. His research has been
supported by the National Science Foundation, National
Institute of Health, IBM T.J. Watson Research Center,
Microsoft, Amazon.com and other private companies.

