Using the Eclipse Parallel Tools Platform in Support of Earth Sciences High Performance Computing

Jay Alameda
National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign

Software Engineering Assembly Conference 2014 - 8 April 2014
Portions of this material are supported by or based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under its Agreement No. HR0011-07-9-0002, the United States Department of Energy under Contract No. DE-FG02-06ER25752, the Blue Waters sustained petascale computing project, which is supported by the National Science Foundation under award number OCI 07-25070, and the SI2-SSI Productive and Accessible Development Workbench for HPC Applications, which is supported by the National Science Foundation under award number OCI 1047956.

The SI2-SSI team is lead by Jay Alameda (NCSA), Greg Watson (IBM), Steven Brandt (LSU), and Allen Malony (U Oregon). Team members and senior personnel include Beth Tibbitts (NCSA), Ralph Johnson (U Illinois), Chris Navarro (NCSA), Sameer Shende (U Oregon), Wyatt Spear (U Oregon), Brian Jewett (U Illinois), Galen Arnold (NCSA), and Rui Liu (NCSA).
Outline

- Overview of Eclipse and Eclipse Parallel Tools Platform (PTP)
- Motivation for Workbench for High Performance Computing (WHPC)
 - Improvements to Eclipse PTP
- Software Engineering Practices Enabled by Eclipse PTP
 - Code visibility
 - Multi-system build management
 - Performance tuning
 - Source code control
 - Issue Tracking
 - Documentation
 - Earth Science/Weather code example
- Eclipse PTP Resources
Outline

- Overview of Eclipse and Eclipse Parallel Tools Platform (PTP)
- Motivation for Workbench for High Performance Computing (WHPC)
 - Improvements to Eclipse PTP
- Software Engineering Practices Enabled by Eclipse PTP
 - Code visibility
 - Multi-system build management
 - Performance tuning
 - Source code control
 - Issue Tracking
 - Documentation
 - Earth Science/Weather code example
- Eclipse PTP Resources
What is Eclipse?

- A vendor-neutral open-source workbench for multi-language development
- A extensible platform for tool integration
- Plug-in based framework to create, integrate and utilize software tools
Eclipse Parallel Tools Platform (PTP)

Coding & Analysis

Launching & Monitoring

Performance Tuning

Debugging

Code development lifecycle
Outline

- Overview of Eclipse and Eclipse Parallel Tools Platform (PTP)
- Motivation for Workbench for High Performance Computing (WHPC)
 - Improvements to Eclipse PTP
- Software Engineering Practices Enabled by Eclipse PTP
 - Code visibility
 - Multi-system build management
 - Performance tuning
 - Source code control
 - Issue Tracking
 - Documentation
 - Earth Science/Weather code example
- Eclipse PTP Resources
Motivation for Workbench for High Performance Computing (WHPC)

- Stable, portable platform for tool development
 - Focus on tool functionality, manage rapid evolution of HPC platforms
 - Encourage consistent tool look and feel
 - Support for HPC application development practices

- Why Parallel Tools Platform?
 - High potential to meet needs of a WHPC.
 - Target next generation of HPC developers growing up with IDEs (Eclipse, Visual Studio, ...)
 - Need to cultivate community of users!
Improvements

- Work within Eclipse release cycle
 - Major (API-breaking) improvements with coordinated June release
 - Last major release Eclipse 4.3 “Kepler” released June 26, 2013
 - Minor enhancements and bug-fixes with two coordinated service releases in September and February
 - Eclipse 4.3 SR2 Released February 28, 2014

- Foci of improvements
 - Improve usability
 - Improve productivity
Significant Recent Improvements

- User-configurable machine configuration
 - Wide variety of configurations now available:
 - Documentation, tutorial at

Both generic and specific
Scalable System Monitoring

- System view
- Jobs running on system
- Active jobs
- Inactive jobs
- Messages
- Console

Stand-alone Sysmon monitoring application available
Synchronized Projects

Projects types can be:

- File
- Service
- Index
- Service
- Launch
- Service
- Build
- Service
- Debug
- Service

Local source code

Now available for all projects not just C/C++/Fortran
Integrated OpenACC documentation and PLDT support (added for BW)

Documentation also available for MPI, OpenMP

OpenACC™ parallel directive

Delineates a block of code that will be executed on an accelerator device.

```
!$acc parallel [clause [, clause ...]]
  block
!$acc end parallel

#pragma acc parallel [clause [, clause ...]]
  block
```

Supported clauses are if, async, num_gangs, num_workers, vector_length, reduction, copy, copyin, copyout, create, present, present_or_copy, present_or_copyin, present_or_copyout, present_or_create, deviceptr, private, firstprivate.
After the build, compiler errors, warnings, and loopmark information are shown in the Problems view and source code editor. (Cray, PGI support added for BW)
<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total MPI Tasks:</td>
<td>32</td>
<td>Each XE6 node has two AMD Interlagos CPUs for a total of 32 integer cores and 16 floating point units per node. Therefore, the product of the number of MPI tasks per node and the number of OpenMP threads per task must be less than or equal to 32 (or 16 if running in single-stream mode). The number of MPI tasks per node must not exceed the total number of MPI tasks.</td>
</tr>
<tr>
<td>MPI Tasks per Node:</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>OpenMP Threads per Process:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run in Dual-Stream Mode:</td>
<td>✅</td>
<td>XE6 nodes are normally run in "dual-stream mode," where every integer core is allocated one task (i.e., one MPI task or one OpenMP thread). However, this means that every two tasks share a floating point unit. Some floating-point-intensive computations may need to run in "single-stream mode," where every other integer core is idle but every task has exclusive access to a floating point unit.</td>
</tr>
<tr>
<td>Job Name:</td>
<td>ptp_job</td>
<td>The name assigned to the job by the qsub or qalter command.</td>
</tr>
<tr>
<td>Account:</td>
<td></td>
<td>Account to which to charge this job.</td>
</tr>
<tr>
<td>Queue:</td>
<td></td>
<td>Designation of the queue to which to submit the job.</td>
</tr>
<tr>
<td>Total Memory Needed:</td>
<td></td>
<td>Maximum amount of memory used by all concurrent processes in the job.</td>
</tr>
</tbody>
</table>
Additional Plug-ins from NCSA

- NCSA publishes additional plug-ins can be added onto an existing PTP installation
 - http://forecaster.ncsa.uiuc.edu/help/index.jsp
 - *(This site to be updated soon with new components)*
- Contribute a **System** menu to the menu bar with XSEDE- and NCSA-specific commands
System Menu

- Open Web content in Eclipse:
 - Open XSEDE User Portal
 - Open User Guide for a machine
 - Open an SSH terminal (as an Eclipse view)

Eclipse-integrated SSH terminals are provided by the Remote System Explorer (RSE), one of the features that is included in the Eclipse for Parallel Application Developers package.
Shortcuts for common PTP tasks:

- **Add Remote Environment** adds a Remote Tools connection for a particular machine

- **Add System Monitor** opens the System Monitoring perspective and begins monitoring a particular machine
System Menu

- The plug-in is preconfigured with information about XSEDE and NCSA resources.
- The bottom four commands generally prompt for a system.
- **Select System** can be used to eliminate this prompt, so these commands always act on a particular system.
MyProxy Logon

- **MyProxy Logon** allows you to authenticate with a MyProxy server
 - Often *myproxy.teragrid.org*
- It stores a “credential,” which is usually valid for 12 hours
- During these 12 hours, SSH connections to XSEDE resources will not require a password; they can use the stored credential
 - However, you **must** enter the correct username for that machine!
New Features (Kepler)

- Target System Configurations
 - Selection filtering – type starting letters of target system configuration to pull up list of possibilities
New Features (continued)

- New Target System Configurations
 - IBM Platform LSF, IBM Platform MPI
New Features (continued)

- Direct **Local** option for launch configuration
New Features: Environment Management

- Module ordering can be specified, modules can be specified on per-build configuration.
New Features: Environment Management

- Target configurations support module specification for launch/debug:
More recent updates

- External Tools Framework (ETFW) transitioned to use the target configuration "JAXB" XML descriptions.
 - Enhanced flexibility for tool integration
- Remote scanner-discovery support for synchronized projects/gcc compiler
 - Eclipse builds index based on remote environment
- Separate Build system from CDT build
 - Synchronized configuration now separate from build configuration
 - Cleaner multi-system build management
 - Builds in any language
- Automatic deployment of scalable debug manager for debugger
Improvements in the works...

- Environment Management enhancements
 - Correct interaction with hierarchical module systems (e.g., lmod)
- Remote support pushed upstream of PTP
 - Can be used by other projects in PTP, becoming closer to a “platform” feature
- Community input desired:
 - OpenMP 4.0 development support?
 - MPI 3.0 development support?
 - Distribution of GSI components with Parallel Tools Platform download?
 - Anything else?
Outline

- Overview of Eclipse and Eclipse Parallel Tools Platform (PTP)
- Motivation for Workbench for High Performance Computing (WHPC)
 - Improvements to Eclipse PTP
- Software Engineering Practices Enabled by Eclipse PTP
 - Code visibility
 - Multi-system build management
 - Performance tuning
 - Source code control
 - Issue Tracking
 - Documentation
 - Earth Science/Weather code example
- Eclipse PTP Resources
Software Engineering

Code Visibility
Software Engineering

Code Visibility

Code navigation
Software Engineering

Code Visibility

- Code navigation
- Syntax-aware editing (navigate to program units and declarations)
Software Engineering

Code Visibility

- Code navigation
- Syntax-aware editing (navigate to program units and declarations)
 - Code Outline
Would like to understand call hierarchy of this code in relation to "main()" in startup.c
Software Engineering: Call Hierarchy (C/C++)

- After selecting main, right click and select <Open Call Hierarchy>
Multi-machine build management

Three types of Eclipse projects

- Local
 - Source is located on local machine, builds happen locally

- Synchronized
 - Source is local, then synchronized with remote machine(s)
 - Building and launching happens remotely (can also happen locally)

- Remote
 - Source is located on remote machine(s), build and launch takes place on remote machine(s)
Synchronized Projects

Projects types can be:
- File Service
- Launch Service
- Build Service
- Debug Service
- Source code copy
- Remote source code
- Edit
- Search/Index
- Navigation
- Synchronize
- Local source code
- Executable

Now available for all projects not just C/C++/Fortran
Performance Tuning: PTP TAU plug-ins

http://www.cs.uoregon.edu/research/tau

- TAU (Tuning and Analysis Utilities)
- First implementation of External Tools Framework (ETFw)
 - Support for additional command-line tools can be added with XML tool definitions
- Eclipse plug-ins wrap TAU functions, make them available from Eclipse
- Full GUI support for the TAU command line interface
- Performance analysis integrated with development environment
Source Code Control: “Team” Features

- Eclipse supports integration with multiple version control systems (VCS)
 - CVS, SVN, Git, and others
 - Collectively known as “Team” services
- Many features are common across VCS
 - Compare/merge
 - History
 - Check-in/check-out
- Some differences
 - Version numbers
 - Branching
CVS Features

- Shows version numbers next to each resource
- Marks resources that have changed
 - Can also change color (preference option)
- Context menu for Team operations
- Compare to latest, another branch, or history
- Synchronize whole project (or any selected resources)
- Similar support for SVN, Git, ...
Issue Tracking

✦ Mylyn Bridge
✦ Tracks tasks, links to source and bug repositories

Connections to Jira, bugzilla, ...
Eclipse Documentation

- Eclipse Help System – built in and standalone (http://help.eclipse.org)

Parallel Tools Platform Release 7.0

The Parallel Tools Platform is designed to allow the Eclipse framework to be used for developing applications for parallel computer systems. PTP provides the following functionality:

- tools for developing applications based on the Message Passing Interface (MPI) standard (and other environments and APIs including OpenMP, UPC, OpenSHMEM, OpenACC, etc.)
- the ability to launch, control and monitor the execution of parallel programs
- the ability to monitor parallel system status information
- an integrated parallel debugger
- a framework for integrating external dynamic tools

In addition, PTP provides a platform for parallel tool developers to integrate their tools within the Eclipse framework. New tools can take advantage of the user interface components and parallel services that are provided by PTP without the need to develop and support this infrastructure across multiple platforms.

PTP 7.0 is released as part of the Eclipse Kepler Simultaneous release (June 2013).

Overview, Background, and Setup information

1. Overview and Features
2. Setup
Adapting Eclipse Documentation to Other Projects: QMCPack

See http://code.google.com/p/qmcpack-doc/

Developers' and users' guides

org.cmscc.qmcpack.doc is developed as an eclipse plug-in for QMCPACK help page. If all goes well, a help document with

• build instructions
• doxygen code documentation
• other materials on wiki

can be downloaded as an eclipse plug-in.

Licensed under UIUC/NCSA open-source license

Instructions for viewing help page in eclipse
Consider 2 possible types of users of Eclipse Parallel Tools ...

- Weather code users/modelers
 - Need to build weather code
 - May need to modify weather code (and rebuild)
- Software specialists enabling modeling projects
 - Lots of software engineering concerns
- Next set of slides address some of those concerns.
Weather code users/modelers

Some of the challenges

- Complex codes (e.g., WRF)
- Codes + HPC architectures can be daunting
- Adding user code not always easy

Navigating Weather Codes

```
!IDEAL:MODEL_LAYER:INITIALIZATION

! This MODULE holds the routines which are used to perform initialization for the individual domains.
!
! This MODULE CONTAINS the following routines:
!
! initialize_field_test - 1. Set different fields to different values. This is only a test if a domain is not found (bad variable) then a fatal error is issued.

MODULE module_initialize_ideal

USE module_domain
USE module_io_domain
USE module_state_description
USE module_model_constants
```

2 errors, 0 warnings, 0 others
Navigating Weather Codes

Code navigation
Navigating Weather Codes

- Code navigation
- Syntax-aware editing (navigate to program units and declarations)
Navigating Weather Codes

- Code navigation
- Syntax-aware editing (navigate to program units and declarations)
Eclipse aiding in the WRF workflow...

- May want to add a model output variable
- Eclipse PTP makes it easy to navigate source, make changes
- WRF Build
 - Interactive “compile” script – use terminal within Eclipse to complete
 - Configure Eclipse to drive “make” to iteratively build after modifications
- WRF Run – can generate a run configuration for particular system, batch environment
Software Specialists enabling modeling projects

- Need a wider array of software engineering tools
 - Source repository
 - Issue tracking
 - Documentation
 - Performance tuning...
- Eclipse Parallel Tools can help with many of these concerns
Outline

- Overview of Eclipse and Eclipse Parallel Tools Platform (PTP)
- Motivation for Workbench for High Performance Computing (WHPC)
 - Improvements to Eclipse PTP
- Software Engineering Practices Enabled by Eclipse PTP
 - Code visibility
 - Multi-system build management
 - Performance tuning
 - Source code control
 - Issue Tracking
 - Documentation
 - Earth Science/Weather code example

- Eclipse PTP Resources
Online Information

- Information about PTP
 - Main web site for downloads, documentation, etc.
 - http://eclipse.org/ptp
 - Wiki for designs, planning, meetings, etc.
 - http://wiki.eclipse.org/PTP
 - Articles and other documents
 - http://wiki.eclipse.org/PTP/articles

- Information about Photran
 - Main web site for downloads, documentation, etc.
 - http://eclipse.org/photran
 - User’s manuals
Mailing Lists

- **PTP Mailing lists**
 - Major announcements (new releases, etc.) - low volume
 - http://dev.eclipse.org/mailman/listinfo/ptp-announce
 - User discussion and queries - medium volume
 - http://dev.eclipse.org/mailman/listinfo/ptp-user
 - Developer discussions - high volume
 - http://dev.eclipse.org/mailman/listinfo/ptp-dev

- **Photran Mailing lists**
 - User discussion and queries
 - http://dev.eclipse.org/mailman/listinfo/photran
 - Developer discussions
 - http://dev.eclipse.org/mailman/listinfo/photran-dev
Getting Involved

- See http://eclipse.org/ptp
- Read the developer documentation on the wiki
 - https://wiki.eclipse.org/PTP
- Join the mailing lists
- Attend the monthly developer meetings
 - Conf Call Monthly: Second Tuesday, 1:00 pm ET
 - Details on the PTP wiki
- Attend the monthly user meetings
 - Teleconference Monthly
 - Each 4th Wednesday, 2:00 pm ET
 - Details on the PTP wiki – webcast videos of previous menu demos available

PTP will only succeed with your participation!
✧ Tutorial Thursday and Friday
✧ Eclipse and the Parallel Tools Platform
 ✧ Thursday AM+PM, Friday AM

✧ Code Development in C/C++/Fortran
✧ Launch on a variety of platforms and schedulers
✧ Debugging with PTP Parallel Debugger
✧ Performance Optimization tools incl. TAU