SEA 2012

David Knox
Computational Bioscience Program
University of Colorado Anschutz Medical Campus

Your World

SEA Conference February 2011

My World

SEA Conference February 2011

Computational Biology

Computation

Adapted from Dr. Alan Qi Dept of Computer Science and Department of Statistics Purdue University SEA Conference February 2011

Modeling takes everything we know

Population Studies

Whole Cell Simulations

Heart/Kidney Simulations

Signaling Pathways

Protein Folding

Transcriptional Regulation

Molecular Dynamics

- What is Transcription Regulation
- Modeling Paradigm
- Stochastic Rule Builder (SRB)
- Visualization of Simulation Results

- What is Transcription Regulation
- Modeling Paradigm
- Stochastic Rule Builder (SRB)
- Visualization of Simulation Results

Transcriptional Regulation

Transcriptional Diversity and Regulation

Modeling Transcriptional Regulation: The Players

Modeling Methods

Requirements and benefits of modeling methods. Adapted from "Modelling and analysis of gene regulatory networks" Guy Karlebach and Ron Shamir, 2008.

All models are wrong; some are useful.

-- George Box

Modeling with the Stochastic Simulation Algorithm

- The SSA is a Monte Carlo simulation of the master chemical equation
- Every interaction between components must be explicitly defined

Reactant + Reactant ... → Resultant + ... @ RATE in STEPS

SSA Modeling of Transcription Factors

Activating / Repressing Transcription


```
Tf_a + DNA[7] \rightarrow TF_a DNA[7] @ on_rate_a in S_a steps
TF_a DNA[7] \rightarrow TF_a + DNA[7] @ off_rate_a
TF_a DNA[7] + TM \rightarrow TM_DNA[7] + TF_a @ on_rate_c in S_c steps
```

```
TM + DNA[90] \rightarrow TM_DNA[90] @ rate in S steps
TM_DNA[90] + DNA[91] \rightarrow TM_DNA[91] + DNA[90] @ rate in S steps
```

 $TM_DNA[90] + DNA[89] \rightarrow TM_DNA[89] + DNA[90] @ rate in S steps$

- What is Transcription Regulation
- Modeling Paradigm
- Stochastic Rule Builder (SRB)
- Visualization of Simulation Results

State Diagram for one DNA Position

State Diagram for TM Advancing one DNA Position

- What is Transcription Regulation
- Modeling Paradigm
- Stochastic Rule Builder (SRB)
- Visualization of Simulation Results

Model System Overview

- State Diagrams
- •DNA sequence
- •TF Motif, Strength
- •Nucleosome Prob.
- Transcriptional
 Machinery Rates
 initiation,
 elongation,
 termination
- •Component Concentrations

Biological Detail vs Computer Resources

Sizes of SRB Generated Models

IME4 (2700 nt)

Nucleotides

per group	# Reactants	# Rules	
1	54366	405326	
2	27361	127106	
3	18361	68205	
6	9361	26206	
10	5758	14127	

Using 30 nucleotides per group

- My manual creation, ~2000 rules, ~1000 reactants
- SRB produces ~4700
 rules, ~2150 reactants

Time to Simulate Models using DIZZY

Time (in seconds) to Simulate Model of IME4 (2700nt)					
	Group Size				
# iterations	1	2	3	6	10
1000		142	91	31	17
2000		227	173	44	35
4000		635	271	103	66
8000			725	208	174
16000				611	484
32000					798

Dizzy Stochastic Simulator

Ramsey et al. "Dizzy: Stochastic simulation of large-scale genetic regulatory networks," J. Bioinformatics Comp. Biol. 2005

- What is Transcription Regulation
- Modeling Paradigm
- Stochastic Rule Builder (SRB)
- Visualization of Simulation Results

Visualizing the Process

```
1602:
            0>>
     1603:
            0>>
    1604: 1>>
    1605:
            ==]
    1606:
             ==1
    1607:
             ==]
    1608:
            ==}
■ time
    1609:
             ==1
    1610:
             ==]
    1611:
                ==]
    1612:
                 ==}
    1613:
                  ==}
    1614:
            0>>
                  ==1
    1615: 0>>
                  ==1
```

State	Character	
Initiation	0>>,1>>	
Transcribing	==}	
Transcribed	==]	

Position on DNA

GENE

Visualizing Transcriptional Interference

Visualizing Nucleosomes and Transcription Factors

```
1139:
                                        State
                                                    Character
1140: P (.....n....)t'
1141: H (.....n....)t'
                                        Initiation
                                                    0>>,1>>
                                                            <<0,<<1
1142: 0
                                        Transcribing
1143: 2
      (.....)t'
                           (....n...)
1144:
                                        Transcribed
                                                    ==1
                                                            [==
1145:
                     . .==] (....n...)
      1146: P
                                        Stable
                                                        (...n...)
      O'(.....n....) ===} (-----b------)
1147:
                                        Nucleosome
      T'(....n...) . P == { (-----b-----) }
1148: 0
                                        Binding
                                                        (---b---)
       (....n...) ==1(....n....
1149: 2
                                        Nucleosome
        1150:
                                        Unbinding
                                                         u )
1151:
      Nucleosome
1152:
      (....)
                     HP==] (....n....)
1153: H (....n...)
                     . A ==1 (....n....)
                        ==] (....n...) (-----b-----)
1154: O (.....n....)t'
1155:
                                       (....n...)
1156:
                        .==1 (----b----) (....n....
1157: . (----b----)
                        ==] (....n...) (....n....
1158: P
                        ==] (....n...) (....n....
                  Position on DNA
                                   GENE
```

Summary

- •State Diagrams
- •DNA sequence
- •TF Motif, Strength
- •Nucleosome Prob.
- •Transcriptional

 Machinery Rates
 initiation,
 elongation,
 termination
- •Component Concentrations
- New Data
- •Updated Data

Future Work

- Parameter Search
- More Detailed Components and Complex Interactions
- Parallelize / Distributed
- Visualization via

Acknowledgements

Computational Bioscience Program
University of Colorado Anschutz Medical Campus

Dr. Robin Dowell - MCDB Univ. of Colorado Boulder

- Alex Poole
- Jess Vera
- Dr. Mary Allen
- Tim Read
- Phil Richmond
- JaeAnn Dwulet
- Amber Sorenson
- Cynthia Page
- Joe Rokicki
- Li Wang

