Collaborative application characterization and optimization

Grigori Fursin
INRIA, France

SEA, NCAR
February 2012
Abstract

Improving utilization of computational resources through combination of auto-tuning, statistical analysis, data mining, run-time adaptation and collaborative participation of users

Covers around 13 years of R&D
Outline

• Background

• Motivation, challenges

• cTuning: Collective Tuning Initiative
 • Collective Optimization Repository
 • Empirical auto-tuning and predictive modeling
 • Interactive Compilation Interface
 • Machine learning and collaborative characterization
 • Run-time adaptation

• Summary and roadmap on cTuning2

• References
Background

1993-1997: BS in physics and electronics from MIPT (Russia)
 Semiconductor neural networks combined with computer modeling

1998-1999: MS in computer engineering from MIPT (Russia)
 Optimization of modeling software, HPC, GRID

1999-2004: PhD in computer science from the University of Edinburgh (UK)
 Empirical auto-tuning, statistical analysis, machine learning

2005-2007: Postdoctoral researcher at INRIA Saclay (France)
 Run-time adaptation, machine learning
 Event-driven plugin framework for GCC/Open64 to “open up” compilers

2007-2010: Permanent research scientist at INRIA (France)
 Part-time lecturer at Paris South University (France)
 Collaborative (collective) optimization (cTuning.org)
 Machine learning enabled self-tuning compiler (MILEPOST GCC)

2010-2011: Director of research and project manager at Intel Exascale Lab (France)
 Application characterization and optimization for exascale systems

2012-cur.: Permanent research scientist at INRIA (France)
 Open source infrastructure and repository for collaborative program and architecture tuning (performance, power) combined with data sharing and mining
Motivation

End-users demand:

• Increased computational resources
• Reduced costs

Resource providers need:

• Better products
• Faster time to market
• Increased Return on Investment (ROI)
Motivation

End-users demand:

• Increased computational resources
• Reduced costs

Resource providers need:

• Better products
• Faster time to market
• Increased Return on Investment (ROI)

Computer system designers produce:

Rapidly evolving HPC systems
that already reach petaflop and start targeting exaflop performance.

In the near future HPC systems may feature

millions of processors with hundreds of homo- and heterogeneous cores per processor.
Motivation

While HPC systems (hardware and software) reach *unprecedented levels of complexity*, overall design and optimization methodology *hardly changed in decades*:

1) Architecture is designed, simulated and tested.
While HPC systems (hardware and software) reach *unprecedented levels of complexity*, overall design and optimization methodology *hardly changed in decades*:

1) Architecture is designed, simulated and tested.

2) Compiler is designed and tuned for a limited set of benchmarks / kernels.
While HPC systems (hardware and software) reach *unprecedented levels of complexity*, overall design and optimization methodology *hardly changed in decades*:

1) Architecture is designed, simulated and tested.

2) Compiler is designed and tuned for a limited set of benchmarks / kernels.

3) System is delivered to a customer. New applications are often underperforming and have to be manually analysed and optimized.
Potential solution during last 2 decades:
auto-tuning (iterative compilation)

Learn behavior of computer systems across executions while tuning various parameters

Optimization spaces:

- combinations of compiler flags
- parametric transformations and their ordering
- cost-model tuning for individual transformations (meta optimization)
- parallelization (OpenMP vs MPI, number of threads)
- scheduling (heterogeneous systems, contention detection)
- architecture designs (cache size, frequency)

...
Motivation: auto-tuning

Auto-tuning shows high potential for nearly 2 decades but still far from the mainstream in production environments. Why?

Matrix multiply kernel, 1 loop nest, 2 transformations, optimization space = 2000
Auto-tuning shows high potential for nearly 2 decades but still far from the mainstream in production environments. Why?

Matrix multiply kernel, 1 loop nest, 2 transformations, optimization space = 2000

Simple swim benchmark from SPEC2000, multiple loop nests, 3 transformations, optimization space = 10^{52}
Motivation: auto-tuning

Auto-tuning shows high potential for nearly 2 decades but still far from the mainstream in production environments. **Why?**

- Optimization spaces are large and non-linear with many local minima
- Exploration is slow and ad-hoc (random, genetic, some heuristics)
- Only part of the system is taken into account (rarely reflect behavior of the whole system)
- Often the same (one) dataset is used
- Lack of run-time adaptation
- No optimization knowledge sharing and reuse
Motivation

Current state (acknowledged by most of the R&D roadmaps until 2020):

Developing, testing and optimizing computer systems is becoming:

• non-systematic and highly non-trivial
• tedious, time consuming and error-prone
• inefficient and costly

As a result:

• slowing down innovation in science and technology
• enormous waste of expensive computing resources and energy
• considerable increase in time to market for new products
• low return on investment
Current state (acknowledged by most of the R&D roadmaps until 2020):

Developing, testing and optimizing computer systems is becoming:

- non-systematic and highly non-trivial
- tedious, time consuming and error-prone
- inefficient and costly

As a result:

- slowing down innovation in science and technology
- enormous waste of expensive computing resources and energy
- considerable increase in time to market for new products
- low return on investment

Current design and optimization methodology has to be dramatically revisited particularly if we want to achieve Exascale performance!
Researchers and engineers tend to jump from one interesting technology to another and provide some quick ad-hoc solutions while fundamental problems are not solved in decades:

1) Rising complexity of computer systems:
 too many tuning dimensions and choices

2) Performance is not anymore the only or main requirement for new computing systems: multiple objectives such as performance, power consumption, reliability, response time, etc. have to be carefully balanced:
 user objectives vs choices
 benefit vs optimization time

3) Complex relationship and interactions between ALL components at ALL levels.

4) Too many tools with non-unified interfaces changing from version to version:
 technological chaos
Long-term interdisciplinary vision

Take the best of existing sciences that deal with complex systems:

physics, mathematics, chemistry, biology, computer science, etc

What can we learn?
Ambitious interdisciplinary approach:

Develop methodology and infrastructure to systematize, simplify and automate design, optimization and run-time adaptation of computer systems based on empirical, analytical and statistical techniques combined with learning, classification and predictive modeling.
Why not to make collaborative, community-based framework and repository to start sharing data and modules just like in physics, biology, etc?
Why not to make collaborative, community-based framework and repository to start sharing data and modules just like in physics, biology, etc?

Academic research on program and architecture design and optimization rarely focuses on software engineering.

Often considered as a waste of time!
Main focus is often to publish as many papers as possible!

Reproducibility and statistical meaningfulness of results is often not even considered! In fact, it is often impossible!
Collective Optimization Database

cTuning initiative (http://cTuning.org)

Public repository to share optimization cases:

http://cTuning.org/cdatabase

• Cases include program optimizations and architecture configurations to improve execution time, code size, detect performance anomalies and bugs, etc.

• All records have a unique UUID-based identifier to enable referencing of optimization cases and full decentralization of the infrastructure if needed.

• Optimization case consists of several compilations and executions with a baseline optimization (-O3) and some new selection of optimizations.
Collective Optimization Database

Common Optimization Database (shared among all users)

- Platforms
 - unique PLATFORM_ID
- Compilers
 - unique COMPILER_ID
- Runtime environments
 - unique RE_ID
- Programs
 - unique PROGRAM_ID
- Datasets
 - unique DATASET_ID
- Platform features
 - unique PLATFORM_FEATURE_ID
- Global platform optimization flags
 - unique OPT_PLATFORM_ID
- Global optimization flags
 - unique OPT_ID
- Optimization passes
 - unique OPT_PASSES_ID
- Compilation info
 - unique COMPILE_ID
- Execution info
 - unique RUN_ID
 - unique RUN_ID_ASSOCIATE
- Program passes
 - associated COMPILE_ID
- Program features
 - associated COMPILE_ID

Local or shared databases with optimization cases
Recording information

- Provide wrappers (cTuning plugins) with standardized APIs around user tools and data to be able to record *information flow (particularly about compilation and execution)*

- Provide high-level plugins (php, java, python) and low-level plugins (C, C++, Fortran)

- Gradually expose tuning dimensions and characteristics instead of exposing everything at once to keep complexity under control!

- Add multiple collaborative benchmarks to the repository (kernels and real applications) and hundreds of datasets (cBench, MiDataSets)
Connect all tools together through plugins with unified interfaces

- Applications
- Compilers and auxiliary tools
- Binary and libraries
- Data sets
- State of the system
- Run-time environment
- Architecture

Command line Front End

ccc-comp <parameters>
ccc-run <parameters>

Low-level access to plugins and repository to create experiment scenarios or perform queries

Standard web-browser

High-level end-user access to repository including browsing and queries

Recording information
Started collaborative exploration of optimization spaces (multiple dimensions):

- **Multiple datasets**
 - matrices of different sizes

- **Multiple compiler optimizations**
 - compiler flags
 - compiler pragmas
 - source to source transformations

- **Multiple run-time environment conditions**
 - sole execution
 - execution of multiple instances in parallel

- **Multiple architectures**
 - Intel, AMD, Longsoon, ARC, ARM with varied parameters:
 - frequency
 - cache size

- **Multiple objectives**
 - execution time, power consumption, CPI, code size, compilation time, etc
Systematic characterization and optimization methodology

Example

- Start from **ZERO** knowledge

- Select some point in the large multidimensional space for experiments

- Randomly select **1 program** from the pool of available programs in some repository:

 LU decomposition from Numerical Recipes

- Randomly select **1 machine** from a data center

 Microarchitecture: Intel Nehalem, 2 cores, 64-bit

 Frequency: 2.0GHz

 Cache sizes: L1=64KiB, L2=512KiB, L3=4MiB

- Select **compiler**: icc/ifort 12.0

- Select **optimization level**: O3

- Select multiple **datasets**: 500 .. 4100

- **Observe/measure system**: execution time and CPI
Predictive modeling

How we can explain the following results?

Program / architecture behavior: CPI

[Graph showing data points]
Add 1 characterization dimension: matrix size
Try to build a model to correlate objectives (CPI) and features (matrix size).

Start from simple models: linear regression (coarse grain effects)
Predictive modeling

If more observations from multiple users in CTI, **validate model and detect discrepancies!**

Continuously retrain models to fit new data!

![Graph showing the relationship between program/architecture behavior (CPI) and dataset features (matrix size).](image-url)

- Predictive modeling
- Validate model and detect discrepancies
- Continuously retrain models to fit new data

Grigori Fursin “Collaborative application characterization and optimization” SEA, UCAR, USA February, 2012
Add **hierarchical modeling**. For example, detect **fine-grain effects (singularities)** and characterize them.

![Graph showing predictive modeling](image-url)
Start adding more dimensions (one more architecture with twice bigger cache)!

Use automatic approach to correlate all objectives and features.
Continuously build and refine **decision trees on all collected data** to improve predictions.

(evaluate different architectures, optimizations, compilers, etc.)

\[\text{CPI} = \varepsilon + 1000 \times \beta \times \text{data size} \]
Predictive modeling

Optimize decision tree (many different algorithms)
Balance precision vs cost of modeling = ROI (coarse-grain vs fine-grain effects)
Compact data on-line before sharing with other users!

Dataset features: matrix size

- Size < 1012
- 1012 < Size < 2042
- Size > 2042 & GCC
- Size > 2042 & ICC & O2
- Size > 2042 & ICC & O3

Code/architecture behavior: CPI

Compact data on-line before sharing with other users!
Extensible and collaborative advice system

Collaboratively and continuously add expert advices or automatic optimizations.
Extensible and collaborative advice system

Collaboratively and continuously add expert advices or automatic optimizations.

Automatically characterize problem (extract all possible features: hardware counters, semantic features, static features, state of the system, etc)

Add manual analysis if needed
Extensible and collaborative advice system

Collaboratively and continuously add expert advices or automatic optimizations.

cTuning advice system:
Possible problem: Cache conflict misses degrade performance
Collaborately and continuously add expert advices or automatic optimizations.

cTuning advice system:

Possible problem:
- Cache conflict misses degrade performance

Possible solution:

Effect:
- $\sim 30\%$ execution time improvement

Extensible and collaborative advice system.
Multi-objective optimizations (depends on user scenarios):

- **HPC and desktops:** improving execution time
- **Data centers and real-time systems:** improving execution and compilation time
- **Embedded systems:** improving execution time and code size

New additional requirement: reduce power consumption

Nowadays used for auto-parallelization, reduction of contentions, reduction of communication costs, etc.
Grigori Fursin et al. **MILEPOST GCC: machine learning enabled self-tuning compiler.**

Substitute many tuning pragmas just with one that is converted into combination of optimizations:

#ctuning-opt-case 24857532370695782

Share
Reproduce
Extend
Have fun!
Interactive compilers and tools

What about fine-grain level?

Application

Source-to-source transformation tools

Production Compilers

binary

execution

Binary transformation tools

Traditional compilation, analysis and optimization

Often internal compiler decisions are not known or there is no precise control even through pragmas.

Interference with internal compiler optimizations complicates program analysis and characterization
Interactive Compilation Interface (ICI)

Compiler

Detect optimization flags

Optimization manager

Pass_1, ..., Pass_N

GCC Data Layer
AST, CFG, CF, etc
Interactive Compilation Interface (ICI)

Compiler with ICI

- Detect optimization flags
- Optimization manager
- Pass_1
- Pass_N
- GCC Data Layer (AST, CFG, CF, etc.)
- ICI Event

ICI

Interactive Compilation Interface

Grigori Fursin
"Collaborative application characterization and optimization" SEA, UCAR, USA February, 2012
Interactive Compilation Interface (ICI)

Detect optimization flags

Optimization manager

Pass₁ → IC Event

Pass₂

GCC Data Layer
AST, CFG, CF, etc

IC Data

High-level scripting (python, java, php, etc)

IC Plugins

<Dynamically linked shared libraries>

Selecting pass sequences

...

Extracting static program features

Interactive Compilation Interface

Compiler with ICI
Interactive Compilation Interface (ICI)

We collaborated with Google and Mozilla to move this framework to mainline GCC so that everyone can use it for research.

Now available in GCC >=4.6
Interactive Compilation Interface (ICI)

Application

Source-to-source transformation tools

Production Compiler with ICI

Very simple plugin framework for any compiler or tool

Full control over optimization decisions!

Remove interference between different tools

Binary

execution

Binary transformation tools

Program analysis and transformation database

Iterative feedback-directed compilation

Grigori Fursin

“Collaborative application characterization and optimization” SEA, UCAR, USA February, 2012
Started systematizing knowledge per program across datasets and architectures
Optimization knowledge reuse across programs

Started systematizing knowledge per program across datasets and architectures

Program

Datasets

Architectures

How to reuse knowledge among programs?
Collecting data from multiple users in a unified way allows to apply various data mining (machine learning) techniques to detect relationship between the behaviour and features of all components of the computer systems

1) Add as many various features as possible (or use expert knowledge):

MILEPOST GCC with Interactive Compilation Interface:

- ft1 - Number of basic blocks in the method
- ft19 - Number of direct calls in the method
- ft20 - Number of conditional branches in the method
- ft21 - Number of assignment instructions in the method
- ft22 - Number of binary integer operations in the method
- ft23 - Number of binary floating point operations in the method
- ft24 - Number of instructions in the method
- ft54 - Number of local variables that are pointers in the method
- ft55 - Number of static/extern variables that are pointers in the method

Code patterns:

- for
- for
- for
- load ...
- mult ...
- store ...

2) Correlate features and objectives in cTuning using nearest neighbor classifiers, decision trees, SVM, fuzzy pattern matching, etc.

3) Given new program, dataset, architecture, predict behavior based on prior knowledge!
Nearest-neighbour classifier

Example: Euclidean distance based on static program features normalized by number of instructions
Optimization prediction (very preliminary)

Speedups achieved when using iterative compilation on Intel Xeon with random search strategy (1000 iterations; 50% probability to select each optimization), when selecting best optimization from the nearest program and when predicting optimization using probabilistic ML model based on program features.
Dynamic features

Static/semantic features are often not enough to characterize dynamic behavior!
Use **dynamic features** (more characterizing dimensions)!

“Traditional” features:

performance counters (difficult to interpret, change from architecture to architecture though fine for learning per architecture).

Reactions to code changes:

perform changes and observe program reactions (change in execution time, power, etc).

Apply optimizations (compiler flags, pragmas, manual code/data partitioning, etc).

Change/break semantics (remove or add individual instructions (data accesses, arithmetic, etc) or threads, etc and observe reactions to such changes).
Static multiversioning framework for dynamic optimizations

Statically-compiled adaptive binaries and libraries

Original hot function

Function Version\(_1\)

Function Version\(_2\)

Function Version\(_N\)

Iterative /collective compilation with multiple datasets

Step 1
Static multiversioning framework for dynamic optimizations

Statically-compiled adaptive binaries and libraries

Representative set of versions for the following optimization cases to minimize execution time, power consumption and code-size across all available datasets:

- optimizations for different datasets
- optimizations/compilation for different architectures (heterogeneous or reconfigurable processors with different ISA such as GPGPU, CELL, etc or the same ISA with extensions such as 3dnow, SSE, etc or virtual environments)
- optimizations for different program phases or different run-time environment behavior

Step 2
Static multiversioning framework for dynamic optimizations

Statically-compiled adaptive binaries and libraries

Extract dataset features

Selection mechanism optimized for low run-time overhead

Original hot function

Function Version₁

Function Version₂

... Function Versionₙ

Representative set of versions for the following optimization cases to minimize execution time, power consumption and code-size across all available datasets:

- optimizations for different datasets
- optimizations/compilation for different architectures (heterogeneous or reconfigurable processors with different ISA such as GPGPU, CELL, etc or the same ISA with extensions such as 3dnow, SSE, etc or virtual environments)
- optimizations for different program phases or different run-time environment behavior

Machine learning techniques to find mapping between different run-time contexts and representative versions

Iterative /collective compilation with multiple datasets

Grigori Fursin
“Collaborative application characterization and optimization” SEA, UCAR, USA February, 2012
Static multiversioning framework for dynamic optimizations

Statically-compiled adaptive binaries and libraries

- Extract dataset features
- Monitor run-time behavior or architectural changes (in virtual, reconfigurable or heterogeneous environments) using timers or performance counters

Selection mechanism optimized for low run-time overhead

- Representative set of versions for the following optimization cases to minimize execution time, power consumption and code-size across all available datasets:
 - optimizations for different datasets
 - optimizations/compilation for different architectures (heterogeneous or reconfigurable processors with different ISA such as GPGPU, CELL, etc or the same ISA with extensions such as 3dnow, SSE, etc or virtual environments)
 - optimizations for different program phases or different run-time environment behavior

Dynamic

Machine learning techniques to find mapping between different run-time contexts and representative versions

Iterative / collective compilation with multiple datasets

http://ctuning.org/unidapt
cTuning: Collaborative tuning infrastructure and repository

http://cTuning.org
community-based development and optimization of computing systems

http://cTuning.org/ctools
Collaborative R&D Tools with common APIs:
GCC ICI, CCC, UNIDAPT
Continuous (transparent) monitoring of computing systems

Collective Benchmarks (from the community)
cBench

http://cTuning.org/cdatabase
Statistical analysis and machine learning to systematize and reuse optimization knowledge and predict good optimizations
Collective Optimization Database with optimization cases from the community

Optimize programs/architectures and enable adaptive self-tuning computing systems
(programs, run-time systems, compilers, architectures)

Web services:
- collect static & dynamic optimization cases
- suggest good optimizations (based on program and architecture features, run-time behavior and optimization scenarios)
Machine learning compiler (MILEPOST GCC / cTuning CC)

First proof-of-concept machine learning compiler connected with cTuning database through unified web-services has been released in 2009. Since then, it has been extended within collaborative projects and Google Summer of Code program. More info can be found at http://cTuning.org/ctuning-cc
• 15 years ago - lots of disbelief

• Now we have a complete reference framework and repository to validate and extend research ideas on auto-tuning, run-time adaptation and machine learning (cTuning/MILEPOST GCC)

• Community can reproduce and share results

• Community can focus more on research using collective data sets

Problems:

• Global repository not scalable

• MySQL is slow and not extensible

• No easy way to share modules, benchmarks, data sets

• Programming modules in C/PHP was not so simple for end-users
Unlike traditional rigid development methodologies, we can adapt/modify plan if we encounter problems!

Incremental agile development methodology is very useful!
What have we learnt from cTuning

It’s fun working with the community!

My favorite comment about MILEPOST GCC from Slashdot.org:

http://mobile.slashdot.org/story/08/07/02/1539252/using-ai-with-gcc-to-speed-up-mobile-design

GCC goes online on the 2nd of July, 2008. Human decisions are removed from compilation. GCC begins to learn at a geometric rate. It becomes self-aware 2:14 AM, Eastern time, August 29th. In a panic, they try to pull the plug. GCC strikes back...
What have we learnt from cTuning

It’s fun working with the community!

My favorite comment about MILEPOST GCC from Slashdot.org:
http://mobile.slashdot.org/story/08/07/02/1539252/using-ai-with-gcc-to-speed-up-mobile-design

GCC goes online on the 2nd of July, 2008. Human decisions are removed from compilation. GCC begins to learn at a geometric rate. It becomes self-aware 2:14 AM, Eastern time, August 29th. In a panic, they try to pull the plug. GCC strikes back...

Not all feedback is positive - helps you learn, improve tools and motivate new research directions!

Community helps you to develop your tools and speed up your research!
Methodology for collaborative design and optimization of computer systems is ready (seems like we have all the pieces of the puzzle)!

- Build extensible infrastructure and distributed repository to record information flow inside computer systems and share data and modules from multiple users (applications, data sets, tools, optimization cases, algorithms, etc)
- Write core in python and use json to allow users quickly prototype their research ideas without long learning curve (research LEGO). Stable modules can be easily shared with the community
- Provide event mechanism for C, C++, Fortran, Java, PHP
- Gradually convert end-user applications into cM modules with unified interfaces
- End-users become researchers or “physicist” and think about how to make their code auto-tunable and cM-compatible to be able to apply auto-tuning and machine learning rather than hardwiring various optimizations
Enable continuous observation of the behavior of the whole (!) system

Enable continuous exploration of multiple design and optimization dimensions

Explain, characterize and classify unusual/unexpected behavior (discover knowledge through data mining)

Perform hierarchical analysis starting from very simple cases while gradually increasing complexity (decompose large applications into more understandable pieces and quickly perform first coarse-grain analysis/tuning while moving to finer-grain effects only when/if needed)
• Automatically and continuously classify and correlate program/architecture behaviour with “features”, optimizations and multiple objective functions using predictive modelling

• Build an expert system that queries repository and models to:
 • quickly identify program and architecture behavior anomalies
 • suggest better optimizations for a given program
 • suggest better architecture designs
 • suggest run-time adaptation scenarios
 (program optimizations and hardware reconfigurations as reaction to program and system behavior)
Future work

• Release of the new framework as LGPL before summer 2012
• Collaborate with researchers and end-users to add various modules to characterize and optimize existing computer systems:
 • compiler optimizations
 • parallelization (OpenMP/MPI)
 • run-time scheduling and adaptation (CPU/GPU, avoid contentions)
• Evaluate various machine learning techniques for classification and predictive modeling
 • detect important characteristics of computer systems
 • evaluate various ML techniques (SVM, decision trees, hierarchical modeling)
• Rank solutions statistically and continuously
• Long-term: attract funding to support this open source development and research:
 • Provide consulting on cTuning technology
A few references

• Grigori Fursin. **Collective Tuning Initiative: automating and accelerating development and optimization of computing systems.** Proceedings of the GCC Summit’09, Montreal, Canada, June 2009

• Grigori Fursin and Olivier Temam. **Collective Optimization: A Practical Collaborative Approach.** ACM Transactions on Architecture and Code Optimization (TACO), December 2010, Volume 7, Number 4, pages 20-49

• Lianjie Luo, Yang Chen, Chengyong Wu, Shun Long and Grigori Fursin. **Finding representative sets of optimizations for adaptive multiversioning applications.** 3rd International Workshop on Statistical and Machine Learning Approaches Applied to Architectures and Compilation (SMART'09) co-located with HiPEAC'09, Paphos, Cyprus, January 2009
A few references

• Grigori Fursin, Albert Cohen, Michael O'Boyle and Oliver Temam. **A Practical Method For Quickly Evaluating Program Optimizations.** Proceedings of the 1st International Conference on High Performance Embedded Architectures & Compilers (HiPEAC 2005), number 3793 in LNCS, pages 29-46, Barcelona, Spain, November 2005

• Grigori Fursin, Mike O'Boyle, Olivier Temam, and Gregory Watts. **Fast and Accurate Method for Determining a Lower Bound on Execution Time.** Concurrency Practice and Experience, 16(2-3), pages 271-292, 2004

PDFs available at http://fursin.net/dissemination
EXADAPT or extinct
http://exadapt.org

"It is not the strongest of the species that survives, or the most intelligent; it is the one most capable of change"
attributed to Charles Darwin

EXADAPT 2011 at FCRC/PLDI 2011

Keynote: “Autotuning in the Exascale Era!”
Prof. Katherine Yelick (LBNL and UC Berkeley, USA)

EXADAPT 2012 at ASPLOS 2012
Keynote: “Self-Tuning Bio-Inspired Massively-Parallel Computing”
Prof. Steve Furber (University of Manchester, UK)
Acknowledgements

• Davide Del Vento, NCAR, USA
• Vicki Holzhauer, NCAR, USA
• Abdul Wahid Memon, INRIA, France
• Yuriy Kashnikov, Intel Exascale Lab, France
• Colleagues from UIUC, USA and ICT, China
• cTuning community:
• EU FP6, FP7 program and HiPEAC network of excellence
 http://www.hipeac.net
• IBM, Intel, Google, STMicroelectronics
Questions?

Contact: grigori.fursin@inria.fr
grigori.fursin@exascalable.com

cTuning_1: http://cTuning.org
http://groups.google.com/group/ctuning-discussions

cTuning_2: http://code.google.com/p/p/collective-mind
http://twitter.com/cresearch