Introduction to Parallel I/0O

Ritu Arora and Si Liu
with contributions from

Robert Mclay, John Cazes, and Doug James

Texas Advanced Computing Center
April 16, 2015

Email: {rauta, siliu}@tacc.utexas.edu

TTTTTTTTTTTTTTT

TAGG TEXAS

Outline

* Introduction to parallel I/0 and parallel file system
* Parallel I/O Pattern

* Introduction to MPI I/O

e Lab Session 1

* Break

* Introduction to HDF5

* Introduction to T3PIO

* |/O Strategies

e Lab-Session2

THE UNIVERSITY OF

TAGG : TEXAS

/O in HPC Applications

High Performance Computing (HPC) applications often
— Read initial conditions or datasets for processing
— Write numerical data from simulations
* Saving application-level checkpoints

In case of large distributed HPC applications, the total execution
time can be broken down into the computation time,
communication time, and the I/O time

Optimizing the time spent in computation, communication and I/O
can lead to overall improvement in the application performance

However, doing efficient I/O without stressing out the HPC system is
challenging and often an afterthought

THE UNIVERSITY OF

TAGG TEXAS

Addressing the 1/0 Bottlenecks

* Avail the software support for parallel I/O that is available in
the form of

— Parallel distributed file systems that provide parallel data paths
to storage disks

— MPI1/O
— Libraries like PHDF5, pNetCDF
— High-level libraries like T3PIO

* Understand the I/O strategies for maintaining good
citizenship on a supercomputing resource

TACS TEXAS

AT AUSTIN

Some Examples of Parallel File Systems

* General Parallel File System (GPFS)
— Now rolled into IBM’s Spectrum Scale product

— Multiple topologies: direct-attached storage, network-
attached storage, and hybrid

* Lustre File System

Other Parallel File Systems
e Panasas Parallel File system (PanFS)
e Parallel Virtual File System (PVFS)

THE UNIVERSITY OF

TAGCS ; TEXAS

AT AUSTIN

GPFS Topology 1

Direct Attached Storage

Storage Storage Storage Storage
Device Device Device Device
Source: http://www.slideshare.net/GabrielMateescu/sonas-44390281

TAGS 6 HERRO

GPFS Topology 2

Network Attached Storage

Storage Storage Storage Storage
Device Device Device Device

Source: http://www.slideshare.net/GabrielMateescu/sonas-44390281
THE UNIVERSITY OF

TAGG 7 TEXAS

Lustre File System

Lustre Clients Memory
Application processes RAM of
running on compute compute nodes
nodes

Network
Ethernet or
InfiniBand

AN NHEE

2

AN NHEE

I

$4055220.4d JO spuesnoy} Jo spaJpuny

0NN NN

Source: Reference 2, 4

Lustre Servers Lustre Targets

Metadata and Metadata and

Object storage Object storage
Servers Targets

_ D — ’MDT\

—_—

)
. | R .
' oL_J

0SSO

L__J
ot_—_:l :
| = .

OSSm-1

e

sysip Suluuids paipuny ma} vy

1S0 <

GPFS versus Lustre

GPFS Lustre

MDS In direct-attached storage Often 1 primary + 1
topology, all nodes acts like failover; since version 2.4,
MDS, whereas in network- supported for clustered

attached topology, some MDS is available
nodes (server nodes) act
like MDS

Storage Type RAID, SAN, ... RAID, SAN, ...

User Control for Tuning None; optimized by User can change some
administrators at the time parameters like stripe size
of installation and stripe count

Daemon Communication TCP/IP Portal

License Proprietary (IBM product) Open-Source

Source: Reference 6
THE UNIVERSITY OF

TACS TEXAS

AT AUSTIN

Lustre File System at TACC

* Each Lustre file system has a different number of OSTs

* The greater the number of OSTs the better the |/O capability

SHOME SWORK SSCRATCH
Stampede 24 672 348
Lonestar N/A (NFS) 30 90

TAGCG

THE UNIVERSITY OF v
AT AUSTIN

Lustre File System - Striping

* Lustre supports the striping of files across several 1/0
servers (similar to RAID 0)

e Each stripe is a fixed size block

myfile : 8 MB file
4 stripes

1 MB stripe size

TAGCG

Lustre File System — Striping on TACC
Resources

 Administrators set a default stripe count and stripe size that
applies to all newly created files

— Stampede: SSCRATCH: 2 stripes/1MB
SWORK: 1 stripe /1IMB

— Lonestar: SSCRATCH: 2 stripes/1MB
SWORK: 1 stripe /1MB

 However, users can reset the default stripe count or stripe
size using the Lustre commands

TACS TEXAS

AT AUSTIN

Lustre Commands

* Get stripe count

% 1fs getstripe ./testfile

./testfile
lmm stripe count: 2
lmm stripe size: 1048576
lmm stripe offset: 50
obdidx objid
50 8916056
38 8952827

* Set stripe count

% 1lfs setstripe -c 4 -s 4M testfile?

1fs getstripe ./testfile2

./testfile2

lmm stripe count: 4

lmm stripe size: 4194304

lmm stripe offset: 21

obdidx objid

21 8891547
13 8946053
57 8906813
44 8945736

TAGCG

objid
0x880c58
0x889bfb

objid
0x87ac9b
0x888185
0x87e83d
0x888048

group

group
0

0
0
0

THE UNIVERSITY OF

TEXAS

AT AUSTIN

Outline

* Introduction to parallel I/0 and parallel file system
* Parallel I/O Pattern

* |Introduction to MPI I/O

 MPI /O Example — Distributing Arrays

e Lab Session 1

* Break

* Introduction to HDF5

* Introduction to T3PIO

e |/O Strategies

* Lab-Session2

THE UNIVERSITY OF

TAGG “ TEXAS

Typical Pattern: Parallel Programs Doing
Sequential 1/0

* All processes send data to master process, and then the process
designated as master writes the collected data to the file

* This sequential nature of I/O can limit performance and
scalability of many applications

QL—+—0O O O

W//

TACC TEXAS

Another Pattern: Each Process Writing to a
Separate File

O Q Q O

TTTTTTTTTTTTTTT

TAGG : TEXAS

Desired Pattern: Parallel Programs Doing
Parallel I/O

* Multiple processes participating in reading data from or writing
data to a common file in parallel

* This strategy improves performance and provides a single file
for storage and transfer purposes

ol lollolls

TACC TEXAS

Outline

* |ntroduction to parallel I/O and parallel file system
e Parallel I/O Pattern

* Introduction to MPI I/O

* Lab Session 1

* Break

* Introduction to HDF5

* Introduction to T3PIO

e |/O Strategies

THE UNIVERSITY OF

TAGG : TEXAS

Need for High-Level Support for Parallel I/
O

» Parallel I/O can be hard to coordinate and optimize if working
directly at the level of Lustre APl or POSIX I/O Interface (not
discussed in this tutorial)

* Therefore, specialists implement a number of intermediate
layers for coordination of data access and mapping from
application layer to 1/0 layer

* Hence, application developers only have to deal with a high-
level interface built on top of a software stack, that in turn sits
on top of the underlying hardware
 MPI-I/O, parallel HDF5, parallel netCDF, T3PIO,...

TACC TEXAS

MPI for Parallel 1/0O

* A parallel I/O system for distributed memory architectures will
need a mechanism to specify collective operations and specify
noncontiguous data layout in memory and file

* Reading and writing in parallel is like receiving and sending
messages

* Hence, an MPI-like machinery is a good setting for Parallel I/O
(think MPI communicators and MPI datatypes)

 MPI-I/O featured in MPI-2 which was released in 1997, and it
interoperates with the file system to enhance 1I/0 performance
for distributed-memory applications

TACS TEXAS

AT AUSTIN

Using MPI-I/O

Given N number of processes, each process participates in
reading or writing a portion of a common file

There are three ways of positioning where the read or write takes
place for each process:

— Use individual file pointers (e.g., MPI File seek/MPI File read)

— Calculate byte offsets (e.g., MPI File read at)

* Explicit offset operations perform data access at the file position given directly
as an argument — no file pointer is used nor updated

— Access a shared file pointer (MPI File seek shared,
MPI File read shared)
FILE
NG NS N N — - —

P1 P2 P(N-1)

PO
TA@@ Source: Reference 3 91 T"H[E ‘JENIB?KOSF

AT AUSTIN

MPI-1/0O APl Opening and Closing a File

* C(Calls to the MPI functions for reading or writing must be
preceded by acalltoMPI File open

— int MPI File open(MPI Comm comm, char *filename,
int amode, MPI Info info, MPI File *fh)

 The parameters below are used to indicate how the file is to be
opened

MPI File open mode Description

MPI MODE RDONLY read only

MPI MODE WRONLY write only

MPI MODE RDWR read and write

MPI MODE CREATE create file if it doesn’t exist

* To combine multiple flags, use bitwise-or “|” in C, or addition “+”
in Fortran

Close the file using: MPI_File close (MPI File fh)

TA@@ . TEXAS

MPI-1/O API for Reading Files

After opening the file, read data from files by either using MPI File seek &
MPI File read OrMPI File read at

int MPI File seek(MPI File fh, MPI Offset offset,
int whence)

int MPI File read(MPI File fh, void *buf, int count,
MPI Datatype datatype, MPI Status *status)

whence inMPI File seek updates the individual file pointer according to
MPI SEEK SET:the pointer is set to offset

MPI SEEK CUR:the pointer is set to the current pointer position plus offset
MPI SEEK END:the pointer is set to the end of file plus offset

int MPI File read at (MPI File fh, MPI Offset offset,
void *buf, 1nt count, MPI Datatype datatype, MPI Status
*status)

TACS TEXAS

AT AUSTIN

Reading a File: readFile2.c

#include<stdio.h>
#include "mpi.h"
#define FILESIZE 80
int main(int argc, char **argv) {
int rank, size, bufsize, nints;
MPI_File fh;
MPI Status status;
MPI Init(&argc, &argv);
MPI Comm rank (MPI COMM WORLD, é&rank);
MPI Comm size (MPI COMM WORLD, é&size);
bufsize = FILESIZE/size;
nints = bufsize/sizeof (int) ;
int bufl[nints];
MPI_File_ppen(MPI_COMM_WORLD,"dfile",MPI_MODE_RDONLY,MPI_INFO_NULL,&fh);
MPI File seek(fh, rank * bufsize, MPI_SEEK SET) ;
MPI File read(fh, buf, nints, MPI_ INT, &status);
printf ("\nrank: %d, buf[%d]: %d", rank, rank*bufsize, buf[0]);
MPI File close (&fh);
MPI Finalize();

return O; THE UNIVERSITY OF

 TAGG : TEXAS

AT AUSTIN

Reading a File: readFile2.c

#include<stdio.h>
#include "mpi.h"
#define FILESIZE 80
int main(int argc, char **argv) {
int rank, size, bufsize, nints;
MPI_File fh; ¢eessssssssssssssssssssssnnnnnn Declaring a File Pointer
MPI Status status;
MPI Init(&argc, &argv);
MPI Comm rank (MPI COMM WORLD, é&rank);
MPI Comm size (MPI COMM WORLD, é&size);

bufsize = FILESIZE/Size; €rr=rrrrrrrrrrrrsrrrrrrrrenrer CalCU|aﬁng BUﬁ:er Size
nints = bufsize/sizeof (int) ; . .
B —— Opening a File

int buf[nints]; [
MPI File open (MPI COMM WORLD,"dfile",MPI MODE RDONLY,MPI INFO NULL, &fh) ;
MPI_File seek(fh, rank * bufsize, MPI_SEEK SET); €--------= File seek &

MPI File read(fh, buf, nints, MPI_ INT, sstatus); €77 Read

printf ("\nrank: %d, buf[%d]: %d", rank, rank*bufsize, buf[0]);

MPI File close(&fh); € =====r==ssssscsscsccsccsssssne—- Closing a File

MPI Finalize();

return O; THE UNIVERSITY OF

TARAGCS 25 TEXAS

AT AUSTIN

Reading a File: readFilel.c

#include<stdio.h>
#include "mpi.h"
#define FILESIZE 80
int main(int argc, char **argv) {
int rank, size, bufsize, nints;
MPI_File fh;
MPI Status status;
MPI Init(&argc, &argv);
MPI Comm rank (MPI COMM WORLD, é&rank);
MPI Comm size (MPI COMM WORLD, é&size);
bufsize = FILESIZE/size;
nints = bufsize/sizeof (int) ;
int bufl[nints];
MPI_File_ppen(MPI_COMM_WORLD,"dfile",MPI_MODE_RDONLY,MPI_INFO_NULL,&fh);
MPI File read at(fh, rank*bufsize, buf, nints, MPI INT, &status)i
printf ("\nrank: %d, buf[%d]: %d", rank, rank*bufsize, buf[0]); :

MPI File close (&fh); .) . esssssssasad
- . T, Combining file seek & read in
MPI Finalize();

one step for thread safety in
return 0;]
MPI_Flle_read_at THE UNIVERSITY OF

' TACG g TEXAS

MPI-1/O API for Writing Files

* While opening the file in the write mode, use the appropriate
flag/s iINMPI_File open: MPI_MODE WRONLY Or
MPI_MODE_RDWR and if needed, MPI_MODE CREATE

* For writing, use MPI_File set viewandMPI File write Of
MPI File write at

int MPI File set view(MPI File fh, MPI Offset disp,
MPI Datatype etype, MPI Datatype filetype, char
*datarep, MPI Info info)

int MPI File write(MPI File fh, void *buf, int count,
MPI Datatype datatype, MPI Status *status)

int MPI File write at(MPI File fh, MPI Offset offset,
void *buf, int count, MPI Datatype datatype,
MPI Status *StatU.S) THE UNIVERSITY OF

TACG TEXAS

Writing a File: writeFilel.c (1)

1. #include<stdio.h>

2. #include "mpi.h"

3. int main(int argc, char **argv) {

4. int i1, rank, size, offset, nints, N=1lo ;
5. MPI File fhw;

6. MPI Status status;

7. MPI Init (&argc, &argv);

8. MPI Comm rank (MPI COMM WORLD, é&rank);

9. MPI Comm size (MPI COMM WORLD, &size);

10. int buf[N];

11. for (1=0;i<N;i++) {
12. buf[i] = 1 ;
13. }

14.

THE UNIVERSITY OF

TAGG : TEXAS

Writing a File: writeFilel.c (2)

15. offset = rank* (N/size) *sizeof (int) ;

l6. MPI File open (MPI COMM WORLD, "datafile",
MPI MODE CREATE|MPI MODE WRONLY, MPI INFO NULL, &fhw);

17. printf ("\nRank: %d, Offset: %d\n", rank, offset);

18. MPI File write at(fhw, offset, buf, (N/size),
MPI INT, &status);

19. MPI_File_close(&fhw);

20. MPI Finalize();

21. return 0O;

22 .}
THE UNIVERSITY OF

TAGG : TEXAS

Compile & Run the Program on Compute Node

c401-204$ mpicc -o writeFilel writeFilel.c
c401-204S ibrun -np 4 ./writeFilel

TACC: Starting up job 1754636

TACC: Setting up parallel environment for MVAPICH2+mpispawn.
Rank: 0, Offset: O

Rank: 1, Offset: 16

Rank: 3, Offset: 48

Rank: 2, Offset: 32

TACC: Shutdown complete. Exiting.

c401-204S$ hexdump -v -e '7/4 "%10d "' -e '""\n"' datafile
0 1 2 3 0 1 2
3 0 1 2 3 0 1

THE UNIVERSITY OF

2 3
TAGG TEXAS

File Views for Writing to a Shared File

* When processes need to write to a shared file, assign regions of the
file to separate processes using MPI_File set view

* File views are specified using a triplet - (displacement, etype, and
filetype) — that is passed toMPI_File set view

displacement = number of bytes to skip from the start of the file
etype = unit of data access (can be any basic or derived datatype)
filetype = specifies which portion of the file is visible to the process

* 1nt MPI File set view(MPI File fh, MPI Offset disp,
MPI Datatype etype, MPI Datatype filetype, char *datarep,

MPI Info info)

 Data representation (datarep above) can be native, internal, or

THE UNIVERSITY OF

TREEG TEXAS

Writing a File: writeFile2.c (1)

1. #include<stdio.h>

2. #include "mpi.h"

3. i1nt main(int argc, char **argv) {

4. int i1, rank, size, offset, nints, N=16;
5. MPI File fhw;

6. MPI Status status;

7. MPI Init (&argc, &argv);

8. MPI Comm rank (MPI COMM WORLD, &rank);
9. MPI Comm size (MPI COMM WORLD, &size);

10. int buf[N];
11. for (i=0;i<N;i++){

12. buf[i] = 1 ;
13. }
14. offset = rank* (N/size) *sizeof (int) ;

THE UNIVERSITY OF

15. ...
TAGG . TEXAS

Writing a File: writeFile2.c (2)

16 .MPI File open(MPI COMM WORLD, "datafile3",
MPI MODE CREATE|MPI MODE WRONLY, MPI INFO NULL,
&fhw) ;

17. printf ("\nRank: %d, Offset: %d\n", rank,
offset);

18. MPI File set view (fhw, offset, MPI INT,
MPI INT, "native", MPI INFO NULL);

19. MPI File write(fhw, buf, (N/size), MPI INT,
&status) ;

20. MPI File close (&fhw);
21. MPI Finalize();

22 . return 0;
23.}

TACC . TEXAS

AT AUSTIN

Compile & Run the Program on Compute Node

c402-302S mpicc -o writeFile2 writeFile2.c
c402-302S ibrun -np 4 ./writeFile?2

TACC: Starting up job 1755476

TACC: Setting up parallel environment for MVAPICH2+mpispawn.
Rank: 1, Offset: 16

Rank: 2, Offset: 32

Rank: 3, Offset: 48

Rank: 0, Offset: O

TACC: Shutdown complete. Exiting.

c402-302S hexdump -v -e '7/4 "%10d "' -e '""\n"' datafile3
0 1 2 3 0 1 2
3 0 1 2 3 0 1

2 3

THE UNIVERSITY OF

TAGG TEXAS

Note about atomicity Read/Write

int MPI File set atomicity (MPI File mpi fh, int flag);

e Use this API to set the atomicity mode — 1 for true and O for false —
so that only one process can access the file at a time

* When atomic mode is enabled, MPI-10O will guarantee sequential
consistency and this can result in significant performance drop

e This is a collective function

TACC TEXAS

Collective I/0 (1)

* Collective I/0O is a critical optimization strategy for reading from,
and writing to, the parallel file system

* The collective read and write calls force all processes in the

communicator to read/write data simultaneously and to wait for
each other

The MPIl implementation optimizes the read/write request based
on the combined requests of all processes and can merge the

requests of different processes for efficiently servicing the
requests

This is particularly effective when the accesses of different
processes are noncontiguous

TACC TEXAS

AT AUSTIN

Collective I/0O (2)

* The collective functions for reading and writing are:
— MPI File read all
— MPI File write all
— MPI File read at all
— MPI File write at all

 Their signature is the same as for the non-collective versions

THE UNIVERSITY OF

TAGG v TEXAS

MPI-I/O Hints

 MPI-IO hints are extra information supplied to the MPI
implementation through the following function calls for
improving the 1/O performance
— MPI_F1ile_open
— MPI_File_set_info
— MPI_File_set_view

* Hints are optional and implementation-dependent

— you may specify hints but the implementation can ignore
them

« MPI_File_get_info used to get list of hints, examples of
Hints: striping unit, striping factor

TACC TEXAS

Lustre — setting stripe count in MPI Code

 MPI may be built with Lustre support
— MVAPICH2 & OpenMPI support Lustre

e Set stripe count in MPI code
Use MPI I/0O hints to set Lustre stripe count, stripe size, and # of writers

Fortran:

call mpi info set (myinfo,”striping factor”,stripe count,mpierr)
call mpi info set (myinfo,”striping unit”,stripe size,mpierr)
call mpi info set (myinfo,”cb nodes”,num writers,mpierr)

C:

mpi info set (myinfo,”striping factor”,stripe count);
mpi info set (myinfo,”striping unit”,stripe size);
mpi info set (myinfo,”cb nodes”,num writers);

e Default:
— # of writers = # Lustre stripes

THE UNIVERSITY OF

TAGG TEXAS

Outline

* Introduction to parallel I/0 and parallel file system
e Parallel I/O Pattern

* |ntroduction to MPI I/O

 Lab Session 1

* Break —for 15 minutes

* Introduction to HDF5

* Introduction to T3PIO

e |/O Strategies

e Lab-Session2

THE UNIVERSITY OF

TAGG . TEXAS

Lab-Sessions: Goals & Activities

* You will learn
— How to compile and execute MPI code on Stampede
— How to do parallel I/O using MPI, HDF5, and T3PIO

 What will you do

— Compile and execute the code for the programs discussed
in the lecture and exercises

— Modify the code for the exercises to embed the required
MPI routines, or calls to high-level libraries

TACC TEXAS

Accessing Lab Files

Please see the hand-
out for the username

,] l (login name) and
* LogontoStampede using your login name password

* Uncompress the

« file, SEA2015. tgz, thatis located in the ~train00 directory into your
HOME directory.

ssh <your login name>@stampede.tacc.utexas.edu
tar -xvzf ~train00/SEA2015.tgz

cd SEA2015/mpi

THE UNIVERSITY OF

TAGG g TEXAS

Please Note

* The project number for this tutorial is:
SEA-Parallel-2015-04-16

* Inthe job submission script, provide the project number mentioned
above (replace the “A-xxxxx” in the line “-A A-xxxxx” with the
appropriate project number)

 The reservation name is SEA-Parallel-2015-04-16 and the queue to be
used isnormal

* Add the following line to your SLURM job-script
#SBTACH —-reservation SEA-Parallel-2015-04-16

THE UNIVERSITY OF

TAGG : TEXAS

Exercise O (if you are not familiar with Stampede)

Objective: practice compiling and running MPI| code on
Stampede

Compile the sample code mpiExampled.c

login3$ mpicc -o mpiExampled4d mpiExampled.c
Modify the job script, myJob . sh, to provide the name of the

executable to the 1brun command

Submit the job script to the SGE queue and check it’s status

login3$ sbatch myJob.sh (youwillgeta job id)
login3$ squeue (check the status of your job)

When your job has finished executing, check the output in the
file myMPI.o<job id>

TACC ’ TEXAS

Exercise 1

* Objective: Learn to use MPI 1/0 calls

* Modify the code in file exercisel.c inthe subdirectory

exercise within the directory SEA2015

— Read the comments in the file for modifying the code
 Extend the variable declaration section as instructed

* You have to add MPI routines to open a file named
“datafile written”, andto close the file

* You have to fill the missing arguments of the routine
MPI File write at
— See the lecture slides for details on the MPI routines

 Compile the code and execute it via the job script using 10 MPI
processes (see Exercise O for the information related to compiling

the code and the jobscript)

THE UNIVERSITY OF

TAGG TEXAS

Exercise 2
* Objective: Learn to use collective 1/O calls

* Modify the code in file exercise2.c inthe subdirectory

exercise within the directory SEA2015

— Read the comments in the file for modifying the code

* UsetheMPI File write all function in the specified place in the
program

* Compile the code and execute it via the job script using 10 MPI
processes (see Exercise O for the information related to compiling
the code and the jobscript)

TACC TEXAS

Viewing the output file

staff$ module swap intel/13.0.2.146 intel/14.0.1.106

staff$S srun -p development -A TG-ASC130034 -t 01:00:00 -n
16 ——-pty /bin/bash -1

c557-201S$ mpicc -0 exercise? exerciselZ.c

c557-201S% ibrun -n 10 -o 0 exercise?

c557-201$ hexdump -v -e '7/4 "%10d "' -e '""\n"' datafile
0 1 2 3 0

1 2
3 0 1 2 3

0 1
2 3

c557-2018$

THE UNIVERSITY OF

TAGG g TEXAS

Outline

* |ntroduction to parallel I/O and parallel file system
e Parallel I/O Pattern

* |Introduction to MPI I/O

* Lab Session 1

* Break

* Introduction to HDF5

* Introduction to T3PIO

e |/O Strategies

* Lab-Session2

THE UNIVERSITY OF

TAGG : TEXAS

HDF5: Hierarchical Data Format

HDF5 is a file format

Managing any kind of data

Software to manage data in the HDF5 format

An HDFS5 file can be viewed as a file system inside a file

It uses a Unix style directory structure

It is a mixture of entities: groups, datasets, and attributes

Any entity can have descriptive attributes (metadata),
e.g. physical units

TTTTTTTTTTTTTTT

TAGG TEXAS

HDF5 Nice Features

* |Interface support for C, C++, Fortran, Java, and Python

* Supported by data analysis packages
(Matlab, IDL, Mathematica, Octave, Visit, Paraview, Tekplot, etc.)

 Machine independent data storage format (self-describing)
e Supports user defined datatypes and metadata
* Read or write to a portion of a dataset (Hyperslab)

* Run on almost all systems

TACC TEXAS

HDF5: The Benefits of Metadata

* |tis easy to record many metadata items within a
solution file

* Adding attributes later won’t break any program that
reads the data.

 With HDF5 it is easy to save with each solution file:
— Computer Name, OS Version
— Compiler and MPI name and version
— Program Version
— Physical unit
— Etc.

TACC TEXAS

PHDF5 Overview

 PHDF5 is the Parallel HDF5 library.
— You can write one file in parallel efficiently
— Parallel performance of HDF5 very close to MPI /0O

* Uses MPI1/0O (Don’t reinvent the wheel)
 MPI I/O techniques apply to HDF5

* Use MPI_Info object to control # writers, #
stripes(Lustre), stripe size(Lustre), etc.

TTTTTTTTTTTTTTT

TAGG TEXAS

Overall Implementation Layers

Applications, e.g. WRF, CESM, OpenFOAM

10 Libraries, e.g. HDF5, NetCDF, PNetCDF

I

Parallel I/0O libraries, e.g. MPI-1/O

I

Parallel File System, e.g. GPFS, Lustre

I

Data stored on Disk

E UNIVERSITY OF

TACC . TEXAS

Optimize HDF5 I/O Performance

* Only 1 file is opened - Efficient interaction with MDS.
* Every task calls HDF5 dataset write routines...

e ...butinternally HDF5 and MPI move data to a small
number of writer nodes (aggregators)

 We can control the number of writers, stripes and
stripe size to tune I/O performance (MPI Info/T3PIO)

TTTTTTTTTTTTTTT

TAGG TEXAS

A Dump of a Simple HDF5 File

S hbdump dset.hb

HDF5 "dset.hb" {
GROUP "/" {
DATASET "T" {
DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (10) / (10) }
DATA {
(0): 1.5, 1, 1.0625, 1.0625, 2.0625,
(5): 1.4375, 1.4375, 0.625, 1.625, 1.625
}
ATTRIBUTE "Description" {
DATASPACE SIMPLE { (1) / (1) }
DATA {
(0) : "thermal soln"

}

THE UNIVERSITY OF

TAGG : TEXAS

Basic HDF5 Structure

Open HDF5

Open File

* Open Group
* Open Dataset
* Write Dataset
* Close Dataset

* Close Group

Close File

Close HDF5

TAGCG

TEXAS

AT AUSTIN

HDF5 Write: Simple Example

... data prepared ...

// Open an existing file.
file_id = HSFopen(FILE, H5F_ACC_RDWR, H5P_DEFAULT);

// Open an existing dataset.
dataset_id = H5Dopen2(file_id, "/dset", H5P_DEFAULT);

// Write the dataset.
status = H5Dwrite(dataset_id, HST_NATIVE_INT, H5S_ALL, H5S_ALL,
H5P_DEFAULT, data);

//status = H5Dread(dataset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL,
H5P_DEFAULT, data); //Read is similar

// Close the dataset.
status = H5Dclose(dataset_id);

// Close the file.
status = H5Fclose(file_id);

TACC . TEXAS

AT AUSTIN

HDF5 Write: Another Example

// Set up file access property list with parallel I/O access
plist_id = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl _mpio(plist_id, comm, info);

//Create a new file collectively and release property list identifier.
file_id = H5Fcreate(HSFILE_ NAME, H5F_ ACC_TRUNC, H5P_DEFAULT, plist_id);
H5Pclose(plist_id);

//Create the dataspace for the dataset.
filespace = H5Screate_simple(RANK, dimsf, NULL);

//Create the dataset with default properties and close filespace.
dset_id = H5Dcreate(file_id, DATASETNAME, H5T NATIVE_INT, filespace,
H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);

//Create property list for collective dataset write.
plist_id = H5Pcreate(H5P_DATASET XFER);
H5Pset_dxpl _mpio(plist_id, HSFD_MPIO_COLLECTIVE);

//Write the data
status = H5Dwrite(dset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, plist_id, data);

THE UNIVERSITY OF

TAGG : TEXAS

Outline

* Introduction to parallel I/0 and parallel file system
e Parallel I/O Pattern

* |Introduction to MPI I/O

 MPI /O Example — Distributing Arrays

e Lab Session 1

* Break

* Introduction to HDF5

* Introduction to T3PIO

e |/O Strategies

* Lab-Session2

THE UNIVERSITY OF

TAGG : TEXAS

T3PIO Library

TACC's Terrific Tool for Parallel I/O

Lustre parallel I/O performance depends on
— Number of Writers (aggregators)

— Number of Stripes (stripe count)

— Stripe Size

— Other parameters

By default MPI I/O sets

— Number of Writers = Number of nodes
— Number of Stripes = directory default (typically 4, could be 1 or 2)
— Stripe Size =1 MB

This T3PIO library will reset these parameters for you.

THE UNIVERSITY OF

TAGG TEXAS

T3PIO Basic Heuristics

The T3PIO library resets the MPI_Info object

1. Decide the upper limit of reasonable stripe counts__,
* s, isbounded by the maximum possible stripe count
a “friendly” user can/should use
* s .. isalsobounded by the Luster-imposed limit
2. Set the stripe count s to be
* asmall multiple of N (nodes), ifs__., >N

* S=5 (ifs. .. <N)

Mmax

TACC TEXAS

T3PIO Library: Fortran

Fortran interface

subroutine t3pio set info(comm,info,dir,err,
GLOBAL SIZE=size,
MAX STRI PES=nstripes,
FACTOR=factor,
RESULTS=results,
FILE="file"

.)

22 22 22 &2 2» &2

THE UNIVERSITY OF

TAGCS 6 TEXAS

AT AUSTIN

T3PIO Library: C/C++

C/C++ interface

include <t3pio.h>

int lerr = t3pio set info(comm, info, dir,
T3PIO GLOBAL SIZE, size,
T3PIO MAX STRIPES, maxStripes,

T3PIO FACTOR, factor,
TBPIO_FILE, "file",
T3PIO RESULTS, &results

)

TACG . TEXAS

AT AUSTIN

How to Use T3PIO Library (FO0)

subroutine hdfb writer(....)
use hdfb

use t3pio

integer info ! MPTI Info object
integer comm ! MPI Communicator
integer (hid t) :: plist id ! Property list identifier

comm = MPI COMM WORLD

! Initialize info object.

call MPI Info create(info,ierr)

! use library to fill info with nwriters, stripe

call t3pio_set info(comm, info, "./", ierr)

call Hbopen f (ierr)

call H5Pcreate f (H5P FILE ACCESS F,plist id, ierr)

call H5Pset fapl mpio f(plist _id, comm, info, ierr)

call HSFcreate f(fileName, H5F ACC TRUNC F, file id, ierr, &

access prp = plist id)

THE UNIVERSITY OF

TAGG . TEXAS

How to Use T3PIO Library (C)

#include "t3pio.h"
#include "hdf5.h"
vold hdf5 writer(....)

{

MPI Info info = MPI INFO NULL;
hid t plist id;

MPI Info create (&info);
ierr = t3pio _set info(comm, info, "./”);

plist _id id = HSPcreate (HSP FILE ACCESS) ;

ierr = H5Pset fapl mpio(plist id, comm, info);
File id = H5SFcreate(fileName, H5SF ACC TRUNC, H5P DEFAULT,
plist_id);

TACC y TEXAS

AT AUSTIN

Performance Benefit (on Stampede)

—o— With T3PIO
| —— Without T3PIO

Rate (MB/sec)
N w S o))
o o o o
o o o o
o o o o

VTV % 3¢ X
0 20 40 60 80 100
File size (GB)

TACC . TEXAS

Parallel Performance

performance/stampede
8000

Avg Rate —+—
Min Rate ——
7000

Max Rate —w—

6000 |

5000 |

4000 r

Rate (in MB/sec)

3000 }

2000 F

1000

0

0 10 20 30 40 50 60 70 80 90 100 110
File Size in GBytes

Shows variation in parallel performance on Stampede.

THE UNIVERSITY OF

TAGG g TEXAS

Outline

* |ntroduction to parallel I/O and parallel file system
e Parallel I/O Pattern

* |Introduction to MPI I/O

* Lab Session 1

* Break

* Introduction to HDF5

* Introduction to T3PIO

e |/O Strategies

* Lab-Session2

THE UNIVERSITY OF

TAGG : TEXAS

1/0 Issues Needing Attention

* Pay attention to the data storage pattern in your application

e Pay attention to the number of MDS (Meta Data Server)
requests

* Pay attention to the number (or frequency) of processes
accessing file simultaneously

e Pay attention to the stripe count choice of your program

THE UNIVERSITY OF

TAGG TEXAS

General Strategies for 1/0

* Access data contiguously in memory and on disk if possible
* Avoid “Too often, too many” access pattern
* Write large files to the file system if possible
* Write one global file instead of multiple files
* Use parallel I/O
— MPI /O
— Parallel HDF5, parallel NetCDF

» Set file attributes (stripe count, stripe size, number of writers)
properly
— T3PIO

TACS TEXAS

AT AUSTIN

Summary

* |/O can impact performance a lot at large scale
* Take advantage of the parallel file system

* Consider using MPI-IO, Parallel HDF5, or Parallel NetCDF
libraries (Non continuous, collective, hint)

* Analyze your code to determine if you may benefit from
parallel I/O

e Set stripe count and stripe size for optimal use if on a Lustre
file system

TACC TEXAS

1.

References

HDF5 Tutorial:
www.hdfgroup.org/HDF5/Tutor/introductory.html

NICS I/O guide:
http://www.nics.tennessee.edu/computing-resources/file-systems/io-lustre-
tips#lustre-fundamentals

T3PIO: github.com/TACC/t3pio

Introduction to Parallel 1/0O:
http://www.olcf.ornl.eov/wp-content/uploads/2011/10/Fall 10.pdf

Introduction to Parallel I/O and MPI-IO by Rajeev Thakur

TAGG : FERROH

Outline

* Introduction to parallel I/0 and parallel file system
e Parallel I/O Pattern

* |Introduction to MPI I/O

* Lab Session 1

* Break

* Introduction to HDF5

* Introduction to T3PIO

e |/O Strategies

e Lab-Session2

THE UNIVERSITY OF

TAGG : TEXAS

HDFE5 Hyperslab

* Allows hdf5 program to read or write to a portion of a dataset
* Hyperslab selection

— logically contiguous collection of points in a dataspace

— a regular pattern of points or blocks in a dataspace.

A Hyperslab is a combo of the global offset and a local size

* Writing in parallel requires understanding Hyperslabs

TACC TEXAS

Hyperslab example 1

75

TAGCG

Hyperslab example 1 (cont.)

0
0
1

0
0
1

0
0
1

0
0
1

0
0
1

0
0
1
1

0
0
1 1
3

2 12 |2 (2 |2 |2 |2 |2
3 13 |3 3 |3 |3 |3 |3
3 13 |3 3 |3 |3 |3 |3
TAGG &

offset[0]=2
offset[1]=0

count[0]=2
count[1]=8

TTTTTTTTTTTTTTT

Hyperslab example 2

77

TAGCG

Hyperslab example 2 (cont.)

o o o o M1 [1 |1 |1
o [0 o |o f1 |1 |1 |1
o [0 o |o f1 |1 |1 |1
o [0 o |o f1 |1 |1 |1
2 2 12 |2 3 [3 [3 |3
2222%
2 2 12 |2 |3 (3 |3 |3
2 12 |2 |2 (3 |3 |3 |3

TAGCG

78

offset[0]=0
offset[1]=4

count[0]=4
count[1]=4

TTTTTTTTTTTTTTT

Hyperslab example 3

79

TAGCG

Hyperslab example 3 (cont.)

0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1
2 2 3 3 2 2 3 3
offset[0]=0
2 2 3 3 2 2 3 3 offset[1]=
o (0 J1 |12 [0 (0 J1 |1 count[0]=
count[1]=2
0 0 1 1 0 0 1 1 block[0]=2
2 |2 [3 |3 |2 |2 |3 |3 block[1]=2
stride[0]=4
2 2 3 3 2 2 3 3 stride[1]=4

TTTTTTTTTTTTTTT

TAGG g TEXASY

HDF5 Lab

* Login to Stampede with the training account or your personal
account

* Change your directory to SSCRATCH
cds

e Untar the lab files (if you have not done so)
tar -xvzf ~train00/SEA2015.tgz

 Change your directory to the hdf5 lab
cd SEA2015/hdf5

THE UNIVERSITY OF

TAGG § TEXAS

HDF5 Lab

The programs hyperslab_col ?.f90 and hyperslab_row_?.c are

simple examples using HDF5 to write a distributed global array to a
HDFS5 file.

The makefile will produce corresponding executables:

hyperslab_col _?.exe -- from hyperslab_col ?.f90
hyperslab_row_?.exe --from hyperslab_row_ ?.c

Add extra executable in the Makefile if necessary

Running the executables will generate hdf5 data files:
data_col.h5 or data_col.h5

Use h5dump to check the data files

TACC . TEXAS

AT AUSTIN

HDF5 Lab

To run the executables, follow these steps.

Build the executable:

You must build from the login node. The required libz.a library
is not available on regular compute nodes. So, if you're still on a
compute node from the previous exercise, please logout or you
may open another terminal.

* Load the parallel hdf5 module before you build:
module reset

module load phdf5
Then build:

make

.i. ﬁeéw’ teractive session: TEXAS 'W.

HDF5 Exercise 1

Objective: Run a simple case to generate the “pattern” in
hyperslab example 1

* Useibrun command within an idev session to run the job:
ibrun -np 4 ./hyperslab_col.1.exe (Fortran)
ibrun -np 4 ./hyperslab_row.1.exe (C)

 Examine the hdf5 output file:
h5dump data_row.h5

h5dump data_col.h5
* You will see the data are kept as in the hyperslab example 1

Note: Fortran users can set the parameters properly (switch the dimension)
and see the same results (since h5dump is written in C)

TACC . TEXAS

HDF5 Exercise 2

Objective: complete hyperslab_col 2.f90 or hyperslab_row _2.c to
generate the pattern in hyperslab example2

Complete the code with proper values of offset, count

Use ibrun command within an idev session to run the job:
ibrun -np 4 ./hyperslab_col.2.exe (Fortran)
ibrun -np 4 ./hyperslab_row.2.exe (C)

Examine the hdf5 output file:
h5dump data_row.h5

h5dump data_col.h5
You will see the data are kept as in the hyperslab example 2.

TACC TEXAS

HDF5 Exercise 3

Objective: Complete hyperslab_col 3.f90 or hyperslab _row_3.c to
generate the pattern in hyperslab example3

Define stride and block in your code
Complete the code with proper values of offset, count, block, stride
Use ibrun command from within an idev session to run the job:
ibrun -np 4 ./hyperslab_col.3.exe (Fortran)
ibrun -np 4 ./hyperslab_row.3.exe (C)

Examine the hdf5 output file:
h5dump data_row.h5

h5dump data_col.h5
You will see the data are kept as in the hyperslab example 3.

TACC TEXAS

