
Preparation

•  Log in to mirage
!$ ssh -l login mirage[0-2].ucar.edu!

Use CryptoCard or Yubikey

•  Copy the example source files
 $ cp –r /glade/home/dnagle/Fortran-III .!

Modern Fortran III for
Computational Scientists

Consulting Services Group
Dan Nagle (Presenter)

May 24, 2012

Outline

•  Documents
•  Coarrays
•  Trial Problems
•  Implementations

Documents

•  WG5 paper N1824.pdf
(www.nag.co.uk/sc22wg5)

•  Rice University (caf.rice.edu)
•  FDIS J3/10-007r1.pdf (www.j3-

fortran.org)
•  Modern Fortran Explained by

Metcalf, Reid, Cohen

PGAS

•  Partitioned Global Address Space
•  Examples include:

– UPC (upc.gwu.edu)
– Titanium (titanium.cs.berkeley.edu)

•  Original Paper at ftp://
ftp.numerical.rl.ac.uk/pub/reports/
nrRAL98060.ps.gz

Brief History

•  Agreed at Delft 2005
•  Discussed at Fairfax 2006
•  Again at London 2007
•  Las Vegas Compromise 2008 (core

& more)
•  Tokyo Further Compromise 2008
•  Finally Agreed Las Vegas 2010

Coarray Concepts

•  A program is treated as if it were
replicated at the start of execution, each
replication is called an image.

•  Each image executes asynchronously.
•  A coarray is indicated by trailing [].
•  A data object without trailing [] is local.
•  Explicit synchronization statements are

used to maintain program correctness.

Memory Basics
(Single Image)

.text (instructions)

.data (static data)

.bss (dynamic data)

heap

stack

variable

Memory Basics
(Multiple Images)

...

variable

Memory Basics
Coarrays

...

... coarray

Memory Organization

•  A static variable is stored at a fixed
memory location.

•  The fixed location is independent of the
number of replications of the program.

•  The coarray attribute connects the
storage locations on each replication.

•  The remote image may use the same
address as the local image to access a
data item.

Using Dynamic Coarrays

•  A coarray may have the same
address on all images.

•  A coarray program must
synchronize when a coarray is
allocated or deallocated, or when an
automatic local variable in a
referenced subprogram is a coarray.

Image Indexes

•  An image has an image index, that
is a number between one and the
number of images, inclusive.

•  The images may be addressed as a
rectangular array.

•  The mapping from coindexes to
image index is the same as an
ordinary array.

Coarray Declarations
! a scalar coarray!
real :: a[*]!
! an array coarray!
real, dimension(n) :: ar[*]!
! a scalar coarray!
real :: ca[10, 10, *]!
! an array coarray!
real :: caa(m, n)[10, 10, *]!

Coarray Declarations
! a coarray with corank > 1!
real :: a[10, *]!
! sum of rank + corank <= 15!
real, dimension(n) :: ar[*]!
! another scalar coarray!
real :: ca[-10: 10, *]!
!
! the last coextent is always *!

Simple Coarray Usage
! get a value from another image!
a = b[4]!
! send a value to another image!
b[n] = a!
! get an array value!
c(1: n) = ca(1: n)[i]!
! put an array value!
caa(1: n)[j] = aa(1: n)!

Coarrays as Actual Arguments

! a coarray may be used!
! as an ordinary actual argument!
! may have intent in, out, in out!
!
call my_sub(b[4])!
x = f(y[j])!

Coarrays as Dummy
Arguments

! a coarray dummy argument!
! needs an explicit interface!
! intent may be in, out, in out!
!
subroutine my_sub(b)!
real, intent(in out) :: b[*]!
!
pure function func(y)!
real, intent(in) :: y(:) [*]!

Segments

•  A segment is a piece of code between
synchronization points.

•  A compiler is free to apply all its
optimizations within a segment.

•  Segments are ordered by synchronization
statements or dynamic memory actions.

•  Segments may be ordered or unordered.

Synchronization

! synchronize all the images!
sync all!
!
! synchronize with a set of images!
sync images(this_image() + 1)!
sync images(list_images(i: j))!
sync images(*)!
!
! wait for memory quiet!
sync memory!

Coarray Local Variables
! function has coarray local variables!
function f(x)!
…!
 real :: local_a[*]!
…!
end function f!
!
! reference f!
! this causes two synchronizations:!
! one at the call, one at the return!
y = f(x1)!

Allocatable Coarrays

! declaring allocatable coarrays!
real, allocatable, dimension(:) :: ac[:]!
!
! allocate as usual!
! this causes a synchronization!
allocate(ac(n)[*], stat= …)!
!
! deallocate as usual!
! this causes a synchronization!
deallocate(ac, stat= …)!

Derived Types with Coarrays
! a derived type with a coarray component!
type :: co_array_t!
 real, dimension(:) :: dtc[*]!
end type co_array_t!
!
! a variable of type co_array_t!
! this must be a scalar!
type(co_array_t) :: my_dt_coarray!
!
! a coarray of derived type!
! my_type has no coarray components!
type(my_type), dimension(:) :: dtc[*]!

Inheriting Derived Types with
Coarrays

! a derived type with a coarray component!
type :: parent_t!
 real, dimension(n) :: dtc[*]!
end type parent_t!
!
! inherit from parent_t!
! if child_t has coarray components,!
! so must the parent_t!
type, extends(parent_t) :: child_t!
 real, dimension(n) :: adtc[*]!
end type child_t!

Derived Types with Coarrays

! a derived type with a coarray component!
type :: has_coarray_t!
 real, dimension(:) :: dtc[*]!
end type has_coarray_t!
!
! a variable of type co_array_t!
! this must be a scalar!
type(has_coarray_t) :: my_dt_coarray!
!
! the coarrayness exists at only one level!

Derived Types with Coarrays

! derived type without coarray components!
type :: no_coarray_t!
 real :: vx, vy, vz!
end type no_coarray_t!
!
! a coarray of derived type!
! no_coarray_t has no coarray components!
type(no_coarray_t) :: dtc(n)[*]!
!
! the coarrayness exists at only one level!

Coarrays & Pointers

! a coarray cannot be a pointer!
! so make a derived type!
type :: cptr!
 real, dimension(:), pointer :: p!
end type cptr!
type(cptr) :: a, b[*]!
! all components assigned!
a = b!
! a% p is undefined!
a = b[j]!

Coarray Intrinsics

! number of images!
nim = num_images()!
! my image number!
me = this_image()!
! cobounds!
l = lcobound(ca, dim= 1)!
u = ucobound(ca, dim= 2)!
! index of cosubscripts!
i = image_index(ca, subs)!

Locks
! declare a lock coarray!
type(lock_type) :: work_lock[*]!
!
! lock a critical resource!
lock(work_lock)!
…!
unlock(work_lock)!
!
! lock a neighbor's lock!
lock(work_lock[me + 1])!
…!
unlock(work_lock[me + 1])!

Critical Section
! one image at a time!
critical!
!
! update the critical resource!
 i_crit = i_crit + 1!
!
! end one image at a time!
end critical!

Atomic Intrinsics

integer(atomic_int_kind) :: iflag[*]!
logical(atomic_logical_kind) :: al[*]!
!
! define iflag on image i to be 42!
call atomic_define(iflag[i], 42)!
!
! get value of al on image j!
call atomic_ref(local_flag, al[j])!

Simple Example

program small_hello_world!
 integer :: me!
continue!
!
 me = this_image()!
 write(unit= *, fmt= '(a, i0, a)') &!
 'Image ', me, ' says "Hello, world!"'!
!
stop 'normal completion'!
end program small_hello_world!

Monte Carlo Toy

•  Using four images, compute an approximation
of pi as four times the ratio of points within a
circle to points within the containing square.

•  Image one should read the number of trials
per image and print the sum of all the image's
estimates.

•  Remember to seed the random number
generator differently on each image.

MxM

•  Image one reads two NxN matrices.
•  Decide upon a storage scheme among

the four images, and distribute the
matrix.

•  Decide upon a computation scheme
(that is, a blocking scheme), and
multiply the two matrices.

•  Image one writes the product matrix.

Digits Home
•  Image one reads 16 four-digit numbers, where

each digit is in the range [1-4].
•  Distribute one fourth of the numbers to each of

four images.
•  Shuffle the numbers to where the ones digit is

equal to the image number where it is stored.
•  Repeat for the tens, hundreds, thousands

digits.
•  Print from each image at each step.

3d-fft

•  Image one reads a rank-three
array.

•  Distribute to each of four images.
•  Compute a three dimensional FFT

in place.
•  Image one prints the result.

Reduction
•  Each image computes a value from its image

number (for example, the image number
squared).

•  Sum the computed numbers in a logarithmic
number (of images) of steps.

•  Without a broadcast, the sum is on each
image.

•  Verify the correctness of the sum on each
image, and print the sum from image one.

Implementations

•  Cray
•  IBM (PPC-only, Beta-only)
•  g95 (but is it maintained?)
•  Intel (12.1+)
•  gfortran (4.6 single-image only)

Future Coarrays

•  John Reid’s Summary N1824
•  Bill Long’s Draft of the TS N1858 = 11-176

–  Pre Garching
•  Metcalf, Reid, & Cohen, Modern Fortran Explained

–  http://www.amazon.com/Explained-Numerical-
Mathematics-Scientific-Computation/dp/
0199601429/ref=sr_1_1?
s=books&ie=UTF8&qid=1326999081&sr=1-1

Basic Ideas
•  Collective functions

–  Changed between 08-131r1 and 11-256r2
•  Teams

–  Original team proposal versus Rice U proposal
•  Notify/Query – How Much Like Events ?
•  Parallel I/O – Features and Limitations ?
•  Global Data Structures – coscalars or

pointers ?
•  Atomic Operations

Documents with Suggestions
•  08-131r1 (the original list of deferred

features)
•  10-166 (Bill Long’s 2010 draft of the Further

Coarrays TS based on 08-131r1)
•  N1835 (John Reid’s 2010 summary list)
•  N1856 (Rice U CAF group 2011 list)
•  N1883 Comments on list (post Garching)
•  11-256r2 (John Reid’s 2011 summary list) **

The Size of the Coarray Additions

•  Competing desires:
–  to manage the workload on compiler suppliers
–  to provide useful tools to applications

programmers as quickly as possible
•  What’s missing ?

–  Must judge without extensive application
programmer experience with f08 coarrays

•  “Useful” is application-dependent

Collective Procedures
•  Which ones ?

–  Similar to the existing reduction intrinsics ?
–  Similar to MPI reduction procedures ?

•  Synchronous or Asynchronous ?
–  If synchronous, what affect on performance ?
–  If asynchronous, how ?

•  Signal completion via event variables ?

The Original Set
•  From 08-131r1 (see also 07-007r3)

–  co_all, co_any, co_count
–  co_maxloc, co_maxval
–  co_minloc, co_minval
–  co_product, co_sum
–  co_findloc ?

•  Most Had Arg Lists (source, result [,
team])

•  Synchronous (Image Control Statements)

The Current Favorites

•  As per 11-256r2
•  co_bcast, co_max, co_min,

co_reduce, co_sum
•  asynchronous ?
•  copy_async ?
•  max-and-copy, min-and-copy ?
•  apply to non-coarrays ?

Teams
•  Teams were originally lists of image

indexes
•  Teams might be subdivided from a

parent team via the scheme proposed
by the Rice U CAF group

•  What should teams do ? (synchronize
and …)
–  label blocks ? (the with team construct)
–  procedures ? (intrinsic or external ?)
–  I/O ? (team= on control list)

Parallel Input/Output

•  Sequential Access or Direct Access or
Both ?
–  If sequential, control record order ?
–  If direct, control record access ?

•  how to manage races ?

•  Linked with Teams how ?
–  team= on control list ?

Notify/Query

•  As is (identified by image number), or
as first class events (identified by
event variables) ?

•  Synchronous or queued ?
•  Applied to a team or global ?
•  What about libraries ?

– Do library writers prefer event variables ?

If First Class Events, Details ?
•  Apply to collective intrinsics ?

–  copy_async: Rice U CAF proposal has 3 events:
source ready, destination ready, copy ready

•  Apply to asynchronous I/O ?
•  Apply to any other wait operation ?
•  Do events queue or signal ?

–  If they queue, how to distinguish individual
events ?

Global Data Structures

•  Coscalars (Germany)
•  Copointers (Rice U CAF)

– and cotarget
•  Pointer attribute allowed on coarrays

(IBM)

Any other business
•  Asynchronous copy (Rice U CAF)
•  More atomic operations (Cray)

–  compare-and-swap is likely
–  the rest of Cray’s current set ?

•  add, and, or, xor
•  and corresponding fetch-and-op versions

•  Support for irregular grids ?
–  affinity for teams ?

The Process Needs Input
•  In February, set the initial feature list to start the

discussion for the International meeting
–  might be viewed as the opening US position

•  The June International meeting at IBM Toronto
Labs will set the work list

•  What are your concerns ?
•  Discussion at http://sea.ucar.edu/forums/updates-

fortran-2008

Modern Fortran III for
Computational Scientists

Thanks for Attending!

May 24, 2012

