Distributed-Memory
Dense Linear Algebra
Program Generation

Bryan Marker, Don Batory, Robert van de Geijn
The University of Texas at Austin
A Product of Collaboration

• Don Batory
 – Software product lines
 – Relational query optimization
 – Software engineering

• Robert van de Geijn
 – Dense linear algebra
 – High performance computing
 – Many libraries targeting various architectures

• Bryan Marker
 – Undergrad research experience with Robert
 – Two years working as a software engineer on code generator and data-flow programming language
 – Co-advised by both professors
Let's get on the same page

• For **computation science and engineering (CSE)** and many other fields, domain EXPERTS are rare
 – It takes a lot of experience to become one

• We need domain experts to get high performance, trusted code

• They provide many libraries
 – Users expect many functions
 – Many target architectures
 • Distributed memory
 • Shared memory
 • Sequential
 • GPGPUs
 • Combinations of these
Let's get on the same page

- Knowledge is manually reapplied when
 - A new function implementation is needed
 - A new architecture comes out
 - A new optimization is discovered for a particular hardware stack

- Experts end up doing a lot of rote development to apply their rare knowledge repeatedly
 - Algorithmic knowledge
 - Hardware knowledge
Holy Grail

• Instead of encoding result of applied knowledge (code), encode expert knowledge
• Then, experts only concern themselves with
 – Sequential algorithms
 – Knowledge about implementing pieces on (parallel) architectures

• Automatically generate optimized implementations
• Get people out of software development loop as much as possible
Towards Program Generation

• Let’s work towards encoding expert knowledge and automatically applying it

• Let’s work towards leveraging the expert’s abilities
 – Automatically applying his/her knowledge

• Allow the expert to gain new knowledge
 – Or relax
Dense Linear Algebra

- **Dense linear algebra (DLA)** is a prime domain to explore these ideas

- Decades of engineering has led to well-layered software
 - Layering makes the expert more effective
 - He/she only needs to port some software components
 - Think: replace a sequential library with a shared-memory library

- Benefit to us: easier to encode with layering
 - Encode knowledge about pertinent software components instead of all code expressible in general-purpose language
WHO KNOWS ABOUT THE BLAS?
The Basic Linear Algebra Subroutines (BLAS)

• Collection of commonly-used DLA operations
 – matrix-matrix multiplication
 – multiplication by a triangular matrix

• Often the bottom of a software stack

• Portability of user applications
 – An appropriate BLAS library can be (easily) linked in
 – This layering is common in DLA and higher-level applications using DLA

• We are in the habit of coding in terms of limited functionality (e.g. with the BLAS)
Distributed-Memory (Cluster) Architectures

- Many computers connected via high-speed network

- Here, we use collective communication routines found in the Message Passing Interface (MPI)
 - (Another layer)

- Difficult to code for

- Layer on top of distributed-memory DLA libraries
 - Other libraries
 - User applications
NOW LET’S TALK ABOUT ENCODING EXPERT KNOWLEDGE TO AUTOMATICALLY GENERATE CODE...
Distributed-Memory DLA

• We target the Elemental library
 – Distributed-memory DLA
 – Functionality similar to ScaLAPACK
 – C++ library with an API we use as a domain-specific language (DSL)
Elemental

- View the p processes in the cluster as a 2-dimensional grid

- About 10 distributions of matrices onto the grid
 - Default (elemental) distribution
 - Other options enable parallelization
 - The expert knows which are valid for each input/output matrix for each operation

- Enable parallel computation by
 - Redistributing data from default distribution to other distributions
 - Performing locally sequential computation on all processes
 - Redistributing data back to default distribution (possibly with reduction)
Distributed-Memory DLA

- We want to encode the knowledge of Jack Poulson and Robert van de Geijn, the expert developers.
- We want to use that knowledge to automatically generate the same or better code.

- We use **Design by Transformation (DxT)** as our way to encode expert knowledge.
 - Hint: we use graphs to encode algorithms/implementations and transformations on graphs to encode expert design knowledge.
\[A = \begin{pmatrix} L & \ast \end{pmatrix} \begin{pmatrix} L \end{pmatrix}^T \]

Algorithm: \(A := \text{CHOL_BLK_VAR3}(A) \)

1. **Partition** \(A \rightarrow \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \)
 - Where \(A_{TL} \) is \(0 \times 0 \)
2. While \(m(A_{TL}) < m(A) \) do
 - Determine block size \(b \)
 - Repartition
 - \(\begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{pmatrix} \)
 - Where \(A_{11} \) is \(b \times b \)
 - \(A_{11} = \Gamma(A_{11}) \)
 - \(A_{21} = A_{21} \text{TRIL}(A_{11})^{-T} \)
 - \(A_{22} = A_{22} - \text{TRIL}(A_{21}A_{21}^T) \)
 - Continue with
 - \(\begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \leftarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{pmatrix} \)

```csharp
PartitionDownDiagonal
(A, ATL, ATR,
ABL, ABR, 0 );
while( ABR.Height() > 0 )
{
  RepartitionDownDiagonal
  ( ATL, /**/ ATR,        A00, /**/ A01, A02,
  /*************/        /****************/
  /**/             A10, /**/  A11, A12,
ABL, /**/ ABR,        A20, /**/  A21, A22 );
  A21_VC_Star.AlignWith( A22 );
  A21_MC_Star.AlignWith( A22 );
  A21_MR_Star.AlignWith( A22 );
  //----------------------------------------------------//
  A11_Star_Star = A11;
  internal::LocalChol( Lower, A11_Star_Star );
  A11 = A11_Star_Star;
  A21_VC_Star = A21;
  internal::LocalTrsm
  ( Right, Lower, ConjugateTranspose, NonUnit,
  (F)1, A11_Star_Star, A21_VC_Star );
  A21_MC_Star = A21_VC_Star;
  A21_MR_Star = A21_VC_Star;
  internal::LocalTriangularRankK
  ( Lower, ConjugateTranspose,
  (F)-1, A21_MC_Star, A21_MR_Star, (F)1, A22 );
  A21 = A21_MC_Star;
  //----------------------------------------------------//
  A21_VC_Star.FreeAlignments();
  A21_MC_Star.FreeAlignments();
  A21_MR_Star.FreeAlignments();
  SlidePartitionDownDiagonal
  ( ATL, /**/ ATR,        A00, A01, /**/ A02,
  /*************/        /*************/
  /**/             A10, /**/  A11, A12,
ABL, /**/ ABR,        A20, A21, /**/ A22 );
}
```
\[A = LL^T \]

Algorithm:
\[A := \text{CHOL_BLK_VAR3}(A) \]

Partition
\[A \rightarrow \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \]
where \(A_{TL} \) is \(0 \times 0 \)

while \(m(A_{TL}) < m(A) \) do

Determine block size \(b \)

Repartition

\[\begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{pmatrix} \]
where \(A_{11} \) is \(b \times b \)

\[A_{11} = \Gamma(A_{11}) \]
\[A_{21} = A_{21} \text{TRIL}(A_{11})^{-T} \]
\[A_{22} = A_{22} - \text{TRIL}(A_{21}A_{21}^T) \]

Continue with

\[\begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{pmatrix} \]

endwhile
\[A = LL^T \]

Algorithm: \(A := \text{CHOL}_\text{BLK_VAR3}(A) \)

Partition \(A \rightarrow \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \)

where \(A_{TL} \) is \(0 \times 0 \)

while \(m(A_{TL}) < m(A) \) do

Determine block size \(b \)

Repartition

\[
\begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{pmatrix}
\]

where \(A_{11} \) is \(b \times b \)

\[
A_{11} = \Gamma(A_{11})
\]

\[
A_{21} = A_{21} \text{TRIL}(A_{11})^{-T}
\]

\[
A_{22} = A_{22} - \text{TRIL}(A_{21}A_{21}^T)
\]

Continue with

\[
\begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \leftarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{pmatrix}
\]

endwhile

PartitionDownDiagonal

\[
(A, ATL, ATR,
 ABL, ABR, 0);
\]

while(ABR.Height() > 0)

{

RepartitionDownDiagonal

(ATL, /**/ ATR,
 A00, /**/ A01, A02,
 /*******/ A10, /**/ A11, A12,
 ABL, /**/ ABR,
 A20, /**/ A21, A22);

A21_VC_Star.AlignWith(A22);
A21_MC_Star.AlignWith(A22);
A21_MR_Star.AlignWith(A22);

//--//

A11_Star_Star = A11;
internal::LocalChol(Lower, A11_Star_Star);
A11 = A11_Star_Star;
A21_VC_Star = A21;
internal::LocalTrsm
(Right, Lower, ConjugateTranspose, NonUnit,
 (F)1, A11_Star_Star, A21_VC_Star);
A21_MC_Star = A21_VC_Star;
A21_MR_Star = A21_VC_Star;

internal::LocalTriangularRankK
(Lower, ConjugateTranspose,
 (F)-1, A21_MC_Star, A21_MR_Star, (F)1, A22);
A21 = A21_MC_Star;

//--//

A21_VC_Star.FreeAlignments();
A21_MC_Star.FreeAlignments();
A21_MR_Star.FreeAlignments();
SlidePartitionDownDiagonal

(ATL, /**/ ATR,
 A00, A01, /**/ A02,
 /**/ A10, A11, /**/ A12,
 /*******/ A11, /*******/
 ABL, /**/ ABR,
 A20, A21, /**/ A22);
}
\[A = L L^T \]

Algorithm: \(A := \text{CHOL_BLK_VAR3}(A) \)

Partition \(A \rightarrow \left(\begin{array}{c|c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) \)

where \(A_{TL} \) is \(0 \times 0 \)

while \(m(A_{TL}) < m(A) \) do

Determine block size \(b \)

Repartition

\[
\left(\begin{array}{c|c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) \rightarrow \left(\begin{array}{c|c|c} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{array} \right)
\]

where \(A_{11} \) is \(b \times b \)

\(A_{11} = \Gamma(A_{11}) \)

\(A_{21} = A_{21} \text{TRIL}(A_{11})^T \)

\(A_{22} = A_{22} - \text{TRIL}(A_{21}A_{21}^T) \)

Continue with

\[
\left(\begin{array}{c|c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) \rightarrow \left(\begin{array}{c|c|c} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{array} \right)
\]

endwhile

PartitionDownDiagonal

\[
(A, ATL, ATR, \\
ABL, ABR, 0);
\]

while(ABR.Height() > 0)

\[
\text{RepartitionDownDiagonal} \\
(ATL, /**/ ATR, A00, /**/ A01, A02, \\
/********************/ /*****************/ \\
/**/ A10, /**/ A11, A12, \\
ABL, /**/ ABR, A20, /**/ A21, A22);
\]

\[
A_{21}_VC_Star.AlignWith(A22);
\]

\[
A_{21}_MC_Star.AlignWith(A22);
\]

\[
A_{21}_MR_Star.AlignWith(A22);
\]

\[
A_{11}_Star_Star = A_{11};
\]

internal::\text{LocalChol}(Lower, A_{11}_Star_Star);

\[
A_{11} = A_{11}_Star_Star;
\]

\[
A_{21}_VC_Star = A_{21};
\]

internal::\text{LocalTrsm}

(Right, Lower, ConjugateTranspose, NonUnit,
(F)_1, A_{11}_Star_Star, A_{21}_VC_Star);

\[
A_{21}_MC_Star = A_{21}_VC_Star;
\]

internal::\text{LocalTriangularRankK}

(Lower, ConjugateTranspose,
(F)_1, A_{21}_MC_Star, A_{21}_MR_Star, (F)_1, A_{22});

\[
A_{21} = A_{21}_MC_Star;
\]

\[
A_{21}_VC_Star.FreeAlignments();
\]

\[
A_{21}_MC_Star.FreeAlignments();
\]

\[
A_{21}_MR_Star.FreeAlignments();
\]

\[
\text{SlidePartitionDownDiagonal} \\
(ATL, /**/ ATR, A00, A01, /**/ A02, \\
/**/ A10, A11, /**/ A12, \\
/********************/ /*****************/ \\
ABL, /**/ ABR, A20, A21, /**/ A22);
\]
What does an expert need to do?

- Choose an algorithm
 - Cholesky has 3 basic algorithms

- Choose how to parallelize each operation
 - Which distributions are valid
 - Which distributions are efficient

- Choose alternate implementations for redistribution
 - E.g. can choose alternatives with intermediate distributions

- Optimize combinations of redistributions
DESIGN BY
TRANSFORMATION
Graphs

- Data-flow, directed acyclic graphs
 - Represents an algorithm or implementation

- A box or node represents an operation
 - An interface without implementation details
 - OR a primitive operation that maps to given code
View as DAG
Transform with Implementations

- **Refinements** replace a box without implementation details
 - Chooses a specific way to implement the box’s functionality
 - E.g. choose an algorithmic variant or way to parallelize a loop body operation
Transform with Implementations

(a) $A_{11} \rightarrow \text{DCHOL} \rightarrow A_{11}' \rightarrow A_{11}$

(b) $A_{11}', A_{21} \rightarrow \text{DTRSM} \rightarrow A_{11}' \rightarrow A_{21}'$

(c) $A_{21}', A_{21} \rightarrow \text{DHERKLN} \rightarrow A_{22}'$

$[M_C, M_R] \rightarrow [*], [*]$

$[M_C, M_R] \rightarrow [V_C, [*]]$

$[V_C, [*]] \rightarrow [M_C, M_R]$

$[M_C, M_R] \rightarrow [M_R, [*]]$

$[M_C, M_R] \rightarrow [M_C, [*]]$

$[M_C, M_R] \rightarrow [M_C, [*]]$

$[M_C, M_R] \rightarrow [M_C, [*]]$

A_{22}'
Transform with Implementations

(a) $A_{11} \rightarrow \text{DCHOL} \rightarrow A_{11}' \rightarrow A_{11}$

DCHOL

$[M_C, M_R] \rightarrow [*, *]$

LCHOL

$[*] \rightarrow [M_C, M_R] \rightarrow A_{11}'$

(b) $A_{11}' \rightarrow \text{DTRSM} \rightarrow A_{21}' \rightarrow A_{11}'$

DTRSM

$[M_C, M_R] \rightarrow [*, *]$

LTRSM

$[V_C, *] \rightarrow [M_C, M_R] \rightarrow A_{21}'$

(c) $A_{21}' \rightarrow \text{DHERKLN} \rightarrow A_{22}' \rightarrow A_{21}'$

DHERKLN

$[M_C, M_R] \rightarrow [M_R, *]$

$[M_C, M_R] \rightarrow [V_C, *] \rightarrow A_{21}'$
Transform with Implementations

(a) $A_{11} \to \text{DCHOL} \to A_{11}' \to A_{11}$

$[M_C, M_R] \to *[*, *] \to \text{LCHOL} \to [*, *] \to [M_C, M_R] \to A_{11}'$

(b) $A_{11}' \to \text{DTRSM} \to A_{21}' \to A_{11}'$

$[M_C, M_R] \to *[*, *] \to \text{LTRSM} \to [V_C, *] \to [M_C, M_R] \to A_{21}'$

(c) $A_{21}' \to \text{DHERKLN} \to A_{22}' \to A_{21}'$

$[M_C, M_R] \to [M_R, *] \to \text{LTriRK} \to [M_C, *] \to [M_C, *] \to A_{22}'$
Transform to Optimize

- **Optimizations** replace a subgraph with another subgraph
 - Same functionality
 - A different way of implementing it
 - Optimizations are chained to improve performance
Transform to Optimize

Optimization Diagram:

- J \rightarrow [*,*] \rightarrow [M_M, M_R]
- [M_M, M_R] \rightarrow [*,*]
- J \rightarrow K

- J \rightarrow [*,*] \rightarrow [M_M, M_R]
- J \rightarrow K

 SEA13-28
Transformations

- We use correct transformations
- Final implementation is correct by construction
DxTer

- Prototype system
- Encode knowledge as transformations
- Input algorithm graph
- Applies all transformations it can
 - Combinatorial search space
- Outputs “best” implementation
 - Generates DSL code
 - E.g. targeting Elemental
DxTer

Input
algorithm
graph

DxTer

Output
code

Hardware
knowledge

Domain
transformations
Traditional Compiler

Input code → Hardware knowledge → Optimizing transformations → Output executable
Cost Analysis

• DxTer estimates cost of all implementations
 – They’re all valid implementations
 – Choose the best-performing

• Form of domain knowledge

• An expert manually coding has to estimate how good his/her implementation is
Cost Analysis

• For DLA, each box has a cost estimate

• First-order approximation
 – In terms of number of processes, problem size, communication and computation costs, etc.

• Using cost functions to mimic the heuristics experts use to make decisions
 – They’re just as good as what an expert uses
Cost Analysis

• For DLA, each box has a cost estimate

• First-order approximation based on
 – Amount of data movement
 – Amount of computation
 – Rough estimate of cost of computation and communication
 – Number of processes

• Using cost functions to mimic the heuristics experts use to make decisions
Cost Analysis

<table>
<thead>
<tr>
<th>Operation</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>LocalChol (n \times n)</code></td>
<td>$\gamma n^3/3$</td>
</tr>
<tr>
<td><code>LocalTrsm (\text{Right, Lower, } n \times n, m \times n)</code></td>
<td>γmnn</td>
</tr>
<tr>
<td><code>A11_Star_Star = A11 (m \times n)</code></td>
<td>$\alpha \left\lfloor \log_2 p \right\rfloor + \beta \frac{p^{-1}}{p} mn$</td>
</tr>
<tr>
<td><code>A21_MC_Star = A21_VC_Star (m \times n)</code></td>
<td>$\alpha \left\lfloor \log_2 c \right\rfloor + \beta \frac{c^{-1}}{c} \frac{m}{r} n$</td>
</tr>
</tbody>
</table>

- Include machine-specific and problem-size parameters
- For now
 - First-order approximations
 - No running and timing necessary
 - Just meant to separate bad choices from good
- You can imagine
 - More complex cost functions
 - More complicated uses (e.g. multi-objective and/or hardware-software co-design)
RESULTS!
Level-3 BLAS

- Matrix-matrix operations

- Matrix-matrix multiplication (Gemm)
 \[C := \alpha A * B + \beta C \]

- Triangular matrix multiply (Trmm)
 \[B := \alpha L * B \]

- Solve a triangular system of equations (Trsm)
 \[B := \alpha L^{-1} * B \]

- Hermitian matrix multiply (Hemm)
 \[C := \alpha A * B + \beta C \]

- Symmetric matrix multiply (Symm)
 \[C := \alpha A * B + \beta C \]

- Hermitian matrix rank-k update (Herk)
 \[C := \alpha A * A^H + \beta C \]

- Symmetric matrix rank-k update (Syrk)
 \[C := \alpha A * A^T + \beta C \]

- Hermitian matrix rank-2k update (Her2k)
 \[C := \alpha (A * B^H + B * A^H) + \beta C \]

- Symmetric matrix rank-2k update (Syrk)
 \[C := \alpha (A * B^T + B * A^T) + \beta C \]
Basic Linear Algebra Subprograms

<table>
<thead>
<tr>
<th>Operation</th>
<th>Versions needed</th>
<th># Implementations Analyzed</th>
<th>DxTer vs. Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gemm</td>
<td>12</td>
<td>378</td>
<td>Same or slightly better</td>
</tr>
<tr>
<td>Hemm</td>
<td>8</td>
<td>16,884</td>
<td>Same</td>
</tr>
<tr>
<td>Her2k</td>
<td>4</td>
<td>552,415</td>
<td>Same</td>
</tr>
<tr>
<td>Herk</td>
<td>4</td>
<td>1,252</td>
<td>Same</td>
</tr>
<tr>
<td>Symm</td>
<td>8</td>
<td>16,880</td>
<td>Same</td>
</tr>
<tr>
<td>Syr2k</td>
<td>4</td>
<td>295,894</td>
<td>Same</td>
</tr>
<tr>
<td>Syrk</td>
<td>4</td>
<td>1,290</td>
<td>Same</td>
</tr>
<tr>
<td>Trmm</td>
<td>16</td>
<td>3,352</td>
<td>Better algorithms</td>
</tr>
<tr>
<td>Trsm</td>
<td>16</td>
<td>1,012</td>
<td>Same, slightly better, or new code</td>
</tr>
</tbody>
</table>
Transformations for the Level-3 BLAS

<table>
<thead>
<tr>
<th>Transformation Type</th>
<th>Unique</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm refinements</td>
<td>19</td>
<td>30</td>
</tr>
<tr>
<td>Parallelizing refinements</td>
<td>14</td>
<td>31</td>
</tr>
<tr>
<td>Redistribution optimizations</td>
<td>38</td>
<td>780</td>
</tr>
</tbody>
</table>

SEA13-40
Performance Test

- Argonne’s BlueGene/P machine Intrepid
- 8,192 cores
- Over 27 TFLOPS peak performance
- 2/3 of peak at top of graphs
BLAS3 Performance on BlueGene/P

Performance (GFLOPS)

ScaLAPACK
DxTer
BLAS3 Performance on Intrepid

Performance (GFLOPS)

- Gemm NT
- Symm LL
- Syr2k LN
- Syrk LN
- Trmm LLNN
- Trsm RLNN

- ScaLAPACK
- DxTer Unoptimized
- DxTer Optimized
- Hand Optimized
LET'S (AUTOMATICALLY) REAPPLY THAT KNOWLEDGE...
Algorithm: \(A := L^{-1}AL^{-H} \) (two-sided Trsm) and \(A := L^HAL \) (two-sided Trmm)

Partition \(A \rightarrow \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \) and \(L \rightarrow \begin{pmatrix} L_{TL} & 0 \\ L_{BL} & L_{BR} \end{pmatrix} \)

where \(A_{TL} \) and \(L_{TL} \) are \(0 \times 0 \).

while \(m(A_{TL}) < m(A) \) do

Determine block size \(b \)

Repartition

\[\begin{pmatrix} A_{TL} & 0 \\ A_{BL} & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & 0 \\ A_{10} & A_{11} \\ A_{20} & A_{21} \\ A_{22} \end{pmatrix}, \quad \begin{pmatrix} L_{TL} & 0 \\ L_{BL} & L_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} L_{00} & 0 \\ L_{10} & L_{11} \\ L_{20} & L_{21} \\ L_{22} \end{pmatrix} \]

where \(A_{11} \) and \(L_{11} \) are \(b \times b \)

Variant 4 for \(L^{-1}AL^{-H} \)

\(A_{10} := L_{11}^{-1}A_{10} \) (Trsm Left)
\(A_{20} := A_{20} - L_{21}A_{10} \) (Gemm NN)
\(A_{11} := L_{11}^{-1}A_{11}L_{11}^{-H} \) (two-sided Trsm)
\(Y_{21} := L_{21}A_{11} \) (Hemm Right)
\(A_{21} := A_{21}L_{11}^{-H} \) (Trsm Right)
\(A_{21} := A_{21} - \frac{1}{2}Y_{21} \) (Axpy)
\(A_{22} := A_{22} - (L_{21}A_{21}^{-H} + A_{21}L_{21}^{-H}) \) (Her2k N)
\(A_{21} := A_{21} - \frac{1}{2}Y_{21} \) (Axpy)

Variant 4 for \(L^HAL \)

\(Y_{10} := A_{11}L_{10} \) (Hemm Left)
\(A_{10} := A_{10} + \frac{1}{2}Y_{10} \) (Axpy)
\(A_{00} := A_{00} + (A_{10}^H L_{10} + L_{10}^H A_{10}) \) (Her2k H)
\(A_{10} := A_{10} + \frac{1}{2}Y_{10} \) (Axpy)
\(A_{10} := L_{11}^H A_{10} \) (Trmm Left)
\(A_{11} := L_{11}^H A_{11}L_{11} \) (two-sided Trmm)
\(A_{20} := A_{20} + A_{21}L_{10} \) (Gemm NN)
\(A_{21} := A_{21}L_{11} \) (Trmm Right)

Continue with

\[\begin{pmatrix} A_{TL} & 0 \\ A_{BL} & A_{BR} \end{pmatrix} \leftarrow \begin{pmatrix} A_{00} & 0 \\ A_{10} & A_{11} \\ A_{20} & A_{21} \end{pmatrix}, \quad \begin{pmatrix} L_{TL} & 0 \\ L_{BL} & L_{BR} \end{pmatrix} \leftarrow \begin{pmatrix} L_{00} & 0 \\ L_{10} & L_{11} \\ L_{20} & L_{21} \end{pmatrix} \]

endwhile
Starting Graph

- A_{20}
- A_{21}
- L_{11}
- A_{11}
- L_{10}
- A_{10}
- A_{00}

- Gemm NN
- Trmm Right
- TwoSided Trmm
- Hemm Left
- Axpy
- Axpy
- Her2k H
- Trmm Left
Two-Sided Trmm and Trsm on Intrepid

- DxTer Two-sided Trsm Optimized
- DxTer Two-sided Trmm Optimized
- DxTer Two-sided Trmm Unoptimized
- DxTer Two-sided Trsm Unoptimized
- ScaLAPACK Two-sided Trmm
- ScaLAPACK Two-sided Trsm

Performance (GFLOPS)

Problem size (x10^4)

x 10^4
Knowledge reuse!

• Many more operations implemented
 – Generated same or better than the expert
 – Generated correct code
 – Generated new operations, never optimized before (manual loop fusion is hard)

• Reused algorithm knowledge to generate code for sequential architectures
 – Just needed some additional sequential-specific knowledge
 – Target BLIS library as DSL
Related Work

- Spiral
- Built to Order (BTO) BLAS
- Tensor Contraction Engine (TCE)
- ATLAS / general autotuning

Some projects with similar goal at lower levels of stack

Ask me if you want to know more
Conclusion

• With the well-layered structure found in a modern distributed-memory DLA library, we can encode expert knowledge
 – Refinements to make implementation choices
 – Optimizations to improve performance
 – Cost estimates to choose “best” implementations

• We can automatically generate code that is the same as or better than an expert

• That knowledge can be reused automatically instead of forcing an expert to reapply it manually
 – Experts can forget (e.g. optimizations or entire algorithms)
 – A computer doesn’t
Moving Forward

• We want to see DxT applied to other domains
 – Not to alleviate common user’s burden
 – To enable the expert developer

• Surely, other domains have similar regularity
 – Relational query optimization (RQO) has done something similar to this for many years
 – There must be others

• We think domain software must be layered and well-designed
 – Expert knowledge is essential
 – Any ideas?
Thanks to...

• Sandia fellowship and NSF Graduate Research Fellowship under grant DGE-1110007
• NSF grants CCF-0917167 and OCI-1148125
• We used resources of the Argonne Leadership Computing Facility at Argonne National Lab, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357
• We are greatly indebted to Jack Poulson
Questions?

bamarker@cs.utexas.edu

www.cs.utexas.edu/~bamarker
void DistTrmmToLocalTrmm::Apply(Poss *poss, Node *node) const
{
 Trmm *trmm = (Trmm*)node;
 RedistNode *node1 = new RedistNode(D_STAR_STAR);
 RedistNode *node2 = new RedistNode(trmm->m_side == LEFT ? m_leftType: m_rightType);
 Trmm *node3 = new Trmm(trmm->m_side, trmm->m_tri,
 trmm->m_trans, trmm->m_coeff, trmm->m_type);
 RedistNode *node4 = new RedistNode(D_MC_MR);
 node1->AddInput(node->Input(0),node->InputConnNum(0));
 node2->AddInput(node->Input(1),node->InputConnNum(1));
 node3->AddInput(node1,0);
 node3->AddInput(node2,0);
 node4->AddInput(node3,0);
 poss->AddNodes(4, node1, node2, node3, node4);
 trmm->RedirectChildren(node4,0);
 trmm->m_poss->DeleteChildAndCleanUp(trmm);
}
Cost Analysis

<table>
<thead>
<tr>
<th>Operation</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>LocalChol ((n \times n))</td>
<td>(\gamma n^3/3)</td>
</tr>
<tr>
<td>LocalTrsm (Right, Lower, (n \times n, m \times n))</td>
<td>(\gamma mnn)</td>
</tr>
<tr>
<td>A11 Star Star = A11 ((m \times n))</td>
<td>(\alpha \left\lceil \log_2 p \right\rceil + \beta \frac{p-1}{p} mn)</td>
</tr>
<tr>
<td>A21 MC Star = A21 VC Star ((m \times n))</td>
<td>(\alpha \left\lceil \log_2 c \right\rceil + \beta \frac{c-1}{c} \frac{m}{r} n)</td>
</tr>
</tbody>
</table>

- Include machine-specific and problem-size parameters
- For now
 - First-order approximations
 - No running and timing necessary
 - Just meant to separate bad choices from good
- You can imagine
 - More complex cost functions
 - More complicated uses (e.g. multi-objective and/or hardware-software co-design)
Related Work

- Auto-tuning
 - Attempt to generate/choose best code for particular architecture
 - Sometimes chooses from a handful of algorithmic options
 - Tweak parameters
 - Explore space and run potential implementations
 - Often misses the optimal because it’s only tweaking parameters

Related Work

• SPIRAL
 – Low-level kernels
 • Primarily digital signal processing (DSP)
 • Now moving into DLA
 – Compact mathematical notation
 • Re-writes for equivalent operations
 – Runtimes are small, so uses on-line learning techniques to find best implementations

• Markus Püschel et al. SPIRAL: Code Generation for DSP Transforms
Related Work

- Tensor Contraction Engine
 - One type of operation
 - Optimizes for space and time complexity
 - All about loop transformations
 - DxT could be used for tensor contractions, but TCE can’t be used for DLA

Related Work

• Built to Order (BTO) BLAS
 – Automatically generates code for algorithms using level-1 and level-2 BLAS operations
 – Focuses on shared memory
 – Unique algorithm representation allowing for search using genetic algorithm