Latest version of the slides can be obtained from
http://www.cse.ohio-state.edu/~panda/sea18-dl.pdf

High Performance Distributed Deep Learning:
A Beginner’s Guide

A Tutorial at SEA Symposium ’18

by

Dhabaleswar K. (DK) Panda
The Ohio State University
E-mail: panda@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~panda

Ammar Ahmad Awan
The Ohio State University
E-mail: awan.10@osu.edu
http://www.cse.ohio-state.edu/~awan.10

Hari Subramoni
The Ohio State University
E-mail: subramon@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~subramon
Outline

• Introduction
 – The Past, Present, and Future of Deep Learning
 – What are Deep Neural Networks?
 – Diverse Applications of Deep Learning
 – Deep Learning Frameworks

• Overview of Execution Environments

• Parallel and Distributed DNN Training

• Latest Trends in HPC Technologies

• Challenges in Exploiting HPC Technologies for Deep Learning

• Solutions and Case Studies

• Open Issues and Challenges

• Conclusion
Brief History of Deep Learning (DL)

ARTIFICIAL INTELLIGENCE
Early artificial intelligence stirs excitement.

MACHINE LEARNING
Machine learning begins to flourish.

DEEP LEARNING
Deep learning breakthroughs drive AI boom.

Milestones in the Development of Neural Networks

- **1943**: S. McCulloch – W. Pitts
- **1957**: F. Rosenblatt
- **1960**: B. Widrow – M. Hoff
- **1969**: M. Minsky – S. Papert
- **1986**: D. Rumelhart – G. Hinton – R. Williams
- **1995**: V. Vapnik – C. Cortes
- **2006**: G. Hinton – S. Ruslan

- **ADALINE**
- **XOR Problem**
- **Multi-layered Perceptron (Backpropagation)**
- **SVM**
- **Deep Neural Network (Pretraining)**

Golden Age (1960-1969)

Dark Age (“AI Winter”) (1970-1980)

2000-2010

1940 | **1950** | **1960** | **1970** | **1980** | **1990** | **2000** | **2010**

Adiustable Weights

Learnable Weights and Threshold

XOR Problem

Solution to nonlinearly separable problems

Backward Error

Hierarchical feature Learning

Limitations of learning prior knowledge

Kernel function: Human Intervention

Big computation, local optima and overfitting

Deep Learning Resurgence

- Deep Learning is going through a resurgence
- Excellent accuracy for deep/convolutional neural networks
- Public availability of versatile datasets like MNIST, CIFAR, and ImageNet
- Widespread popularity of accelerators like NVIDIA GPUs

Courtesy: http://trends.google.com
Understanding the Deep Learning Resurgence

- Deep Learning is a sub-set of Machine Learning
 - But, it is perhaps the most radical and revolutionary subset
 - Automatic feature extraction vs. hand-crafted features

- Deep Learning
 - A renewed interest and a lot of hype!
 - Key success: Deep Neural Networks (DNNs)
 - Everything was there since the late 80s except the “computability of DNNs”

Courtesy: http://www.deeplearningbook.org/contents/intro.html
Resurgence of Deep Learning in the Many-core Era

- **Computability of DNNs** made possible by modern and efficient hardware
 - Many DNN training tasks were impossible to compute!
 - GPUs are at the core of DNN training performance!

- **Availability of Datasets**
 - CIFAR10 - https://www.cs.toronto.edu/~kriz/cifar.html
 - ImageNet - https://www.image-net.org
 - Street View House Numbers (SVHN) - http://ufldl.stanford.edu/housenumbers/
 - Several others..

- **Excellent Accuracy** for classical Machine Learning problems
 - Case study: 30 years of research vs. proposed Neural Machine Translation (NMT)
The Rise of GPU-based Deep Learning

Intel is committed to AI and Deep Learning as well!

Courtesy: https://newsroom.intel.com/editorials/krzanich-ai-day/
Deep Learning, Many-cores, and HPC

- Nvidia GPUs are the main driving force for faster training of DL models
 - The ImageNet Challenge - (ILSVRC)
 - 90% of the ImageNet teams used GPUs in 2014*
 - Deep Neural Networks (DNNs) like AlexNet, GoogLeNet, and VGG are used
 - A natural fit for DL due to the throughput-oriented nature

- In the High Performance Computing (HPC) arena
 - 85/500 Top HPC systems use NVIDIA GPUs (Nov ’17)
 - CUDA-Aware Message Passing Interface (MPI)
 - NVIDIA Kepler, Pascal, and Volta architecture
 - DGX-1, DGX1-V (Volta), and DGX-2
 - Dedicated DL super-computers

*https://blogs.nvidia.com/blog/2014/09/07/imagenet/
The Bright Future of Deep Learning

1.1 Artificial Intelligence Revenue, World Markets: 2016-2025

Current and Future Use Cases of Deep Learning

1.2 Artificial Intelligence Revenue, Top 10 Use Cases, World Markets: 2025

- Contract analysis
- Object detection and classification - avoidance, navigation
- Object identification, detection, classification, tracking from geospatial images
- Automated geophysical feature detection
- Text query of images
- Content distribution on social media
- Predictive maintenance
- Efficient, scalable processing of patient data
- Static image recognition, classification, and tagging
- Algorithmic trading strategy performance improvement

Courtesy: https://www.top500.org/news/...
Outline

• Introduction
 – The Past, Present, and Future of Deep Learning
 – What are Deep Neural Networks?
 – Diverse Applications of Deep Learning
 – Deep Learning Frameworks

• Overview of Execution Environments

• Parallel and Distributed DNN Training

• Latest Trends in HPC Technologies

• Challenges in Exploiting HPC Technologies for Deep Learning

• Solutions and Case Studies

• Open Issues and Challenges

• Conclusion
So what is a Deep Neural Network?

- Example of a 3-layer Deep Neural Network (DNN) – (input layer is not counted)

Graphical/Mathematical Intuitions for DNNs

Drawing of a Biological Neuron

The Mathematical Model

Key Phases of Deep Learning

• Deep Learning has two major tasks
 1. Training of the Deep Neural Network
 2. Inference (or deployment) that uses a trained DNN

• DNN Training
 – Training is a compute/communication intensive process – can take days to weeks
 – Faster training is necessary!

• Faster training can be achieved by
 – Using Newer and Faster Hardware – But, there is a limit!
 – Can we use more GPUs or nodes?
 • The need for Parallel and Distributed Training
DNN Training and Inference

TensorFlow playground (Quick Demo)

• To actually train a network, please visit: http://playground.tensorflow.org
Outline

• Introduction
 – The Past, Present, and Future of Deep Learning
 – What are Deep Neural Networks?
 – Diverse Applications of Deep Learning
 – Deep Learning Frameworks

• Overview of Execution Environments
• Parallel and Distributed DNN Training
• Latest Trends in HPC Technologies
• Challenges in Exploiting HPC Technologies for Deep Learning
• Solutions and Case Studies
• Open Issues and Challenges
• Conclusion
Diverse Application Areas for Deep Learning

• Vision
 – Image Classification
 – Style Transfer
 – Caption Generation

• Speech
 – Speech Recognition
 – Real-time Translation

• Text
 – Sequence Recognition and Generation

• Disease discovery
 – Cancer Detection

• Autonomous Driving
 – Combination of multiple areas like Image/Object Detection, Speech Recognition, etc.
Style Transfer

Synthesized Image

#NeuralDoodle

Courtesy: https://github.com/alexjc/neural-doodle
Style Transfer

Synthesized Image

#NeuralDoodle

[Image of synthesized image]

Courtesy: https://github.com/alexjc/neural-doodle
Caption Generation

"man in black shirt is playing guitar."

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

"girl in pink dress is jumping in air."

"black and white dog jumps over bar."

"young girl in pink shirt is swinging on swing."

Courtesy: https://machinelearningmastery.com/inspirational-applications-deep-learning/
Shakespeare’s Style Passage Generation

Remember, all the RNN knows are characters, so in particular it samples both speaker’s names and the contents. Sometimes we also get relatively extended monologue passages, such as:

• VIOLA: Why, Salisbury must find his flesh and thought That which I am not aps, not a man and in fire, To show the reining of the raven and the wars To grace my hand reproach within, and not a fair are hand, That Caesar and my goodly father's world; When I was heaven of presence and our fleets, We spare with hours, but cut thy council I am great, Murdered and by thy master's ready there My power to give thee but so much as hell: Some service in the noble bondman here, Would show him to her wine.

• KING LEAR: O, if you were a feeble sight, the courtesy of your law, Your sight and several breath, will wear the gods With his heads, and my hands are wonder'd at the deeds, So drop upon your lordship's head, and your opinion Shall be against your honour.

Courtesy: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
Machine Translation

Some of the “dirty” letters we use for training. Dirt, highlights, and rotation, but not too much because we don’t want to confuse our neural net.

Courtesy: https://research.googleblog.com/2015/07/how-google-translate-squeezes-deep.html
Google Translate

Courtesy: https://www.theverge.com/2015/1/14/7544919/google-translate-update-real-time-signs-conversations
Self Driving Cars

Courtesy: http://www.teslarati.com/teslas-full-self-driving-capability-arrive-3-months-definitely-6-months-says-musk/
Cancer Detection

Benign
- Infected cysts
- Lipomas
- Inflammation
- Fibro adenomas

Malignant
- Metastases
- Spreading bilateral
- Carcinoma in situ
- Microcalcification

1600 pixels = 1600 features

Num of nodes in hidden layers:
- 512
- 256
- 128

Output layer
- Benign
- Malignant

Courtesy: https://blog.insightdatascience.com/automating-breast-cancer-detection-with-deep-learning-d8b49da17950
Outline

• **Introduction**
 – The Past, Present, and Future of Deep Learning
 – What are Deep Neural Networks?
 – Diverse Applications of Deep Learning
 – **Deep Learning Frameworks**

• Overview of Execution Environments
• Parallel and Distributed DNN Training
• Latest Trends in HPC Technologies
• Challenges in Exploiting HPC Technologies for Deep Learning
• Solutions and Case Studies
• Open Issues and Challenges
• Conclusion
Deep Learning Frameworks

• Many Deep Learning frameworks
 – Berkeley Caffe
 – Facebook Caffe2
 – Google TensorFlow
 – Microsoft CNTK
 – Facebook Torch/PyTorch
 – Chainer/ChainerMN
 – Intel Neon/Nervana Graph

• Open Neural Net eXchange (ONNX) Format
Why we need DL frameworks?

• Deep Learning frameworks have emerged
 – hide most of the *nasty mathematics*
 – focus on the *design* of neural networks

• Distributed DL frameworks are being designed
 – We have saturated the peak potential of a single GPU/CPU/KNL
 – Parallel (multiple processing units in a single node) and/or Distributed (usually involves multiple nodes) frameworks are emerging

• Distributed frameworks are being developed along two directions
 – The HPC Eco-system: MPI-based Deep Learning
 – Enterprise Eco-system: BigData-based Deep Learning

Statement and its dataflow fragment. The data and computing vertexes with different colors reside on different processes.

AI Index report offers very detailed trends about AI and ML

It also provides interesting statistics about open source DL frameworks and related GitHub statistics

More details about DL frameworks, their features, and statistics (see Appendix)

Courtesy: http://cdn.aiindex.org/2017-report.pdf
Define-by-run frameworks vs. Define-and-run?

- Define-and-run: TensorFlow, Caffe, Torch, Theano, and others
- Define-by-run
 - PyTorch and Chainer
 - TensorFlow 1.5 (Jan, 26th) has introduced an Eager Execution (Define-by-run) mode

Berkeley (BVLC) Caffe

- One of the most popular DL framework
 - Winner of the ACM MM open source award 2014
- Yangqing Jia (BVLC)
 - Author of Caffe and Caffe2 (Facebook)
- The framework has a modular C++ backend
- C++ and Python frontends
- Caffe is a single-node but multi-GPU framework

 Courtesy: http://caffe.berkeleyvision.org
Facebook Caffe2

- Caffe2 is a more versatile, diversified, and refactored framework
- Supported by Facebook
- Works on several platforms including mobile platforms
- https://github.com/caffe2/caffe2
- Main motivation
 - New Application Areas
 - Flexibility
 - Newer Platforms
 - Mobile

Courtesy: https://caffe2.ai
Google TensorFlow

- The most widely used framework open-sourced by Google
- Replaced Google’s DistBelief\(^1\) framework
- Runs on almost all execution platforms available (CPU, GPU, TPU, Mobile, etc.)
- Very flexible but performance has been an issue
- Certain Python peculiarities like `variable_scope` etc.
- https://github.com/tensorflow/tensorflow

Courtesy: https://www.tensorflow.org/

\(^1\) Jeffrey Dean et al., “Large Scale Distributed Deep Networks”
Microsoft Cognitive Toolkit (CNTK)

- Formerly CNTK, now called the Cognitive Toolkit
- C++ backend
- C++ and Python frontend
- ASGD, SGD, and several others choices for Solvers/Optimizers
- Constantly evolving support for multiple platforms
- Performance has always been the “key feature”
- https://github.com/microsoft/cntk

Facebook Torch/PyTorch

- Torch was written in Lua
 - Adoption wasn’t wide-spread
- PyTorch is a Python adaptation of Torch
 - Gaining lot of attention
- Several contributors
 - Biggest support by Facebook
- There are/maybe plans to merge the PyTorch and Caffe2 efforts
- Key selling point is ease of expression and “define-by-run” approach

Courtesy: http://pytorch.org
Preferred Networks Chainer

- Uses **Define-by-run** (Chainer, PyTorch) approach instead of **Define-and-run** (Caffe, TensorFlow, Torch, Theano) approach
- **ChainerMN** provides multi-node parallel/distributed training using Message Passing Interface (MPI) and Chainer
- **MVAPICH2 MPI** library is being used by Preferred Networks
- ChainerMN is geared towards performance
 - Focus on Speed as well as multi-node Scaling
 - *Trained ResNet-50 on 256 P100 GPUs in 15 minutes!!* [1]

Intel Neon/Nervana Graph

- Neon is a Deep Learning framework by Intel/Nervana
 - Works on CPUs as well as GPUs!
- Nervana Graph is like an Intermediate Representation (IR) for Neural Nets
- Nervana Graph will support various frontends and backends
 - NervanaGraph (ngraph) - https://github.com/NervanaSystems/ngraph

Frontends
- neon
- Direct use
- Other frameworks
- ...

Transformers
- Hardware platform X
- Hardware platform Y
- Distributed training
- ...

Courtesy: https://ai.intel.com/intel-nervana-graph-preview-release/
Open Neural Network eXchange (ONNX) Format

• ONNX- Not a Deep Learning framework but an open format to exchange “trained” networks across different frameworks

• Currently supported
 – Frameworks: Caffe2, Chainer, CNTK, MXNet, PyTorch
 – Convertors: CoreML, TensorFlow
 – Runtimes: NVIDIA

• https://onnx.ai
• https://github.com/onnx
Many Other DL Frameworks...

- Keras - https://keras.io
- MXNet - http://mxnet.io
- Theano - http://deeplearning.net/software/theano/
- The list keeps growing and the names keep getting longer and weirder ;-)
 - Livermore Big Artificial Neural Network Toolkit (LBANN) - https://github.com/LLNL/Lbann
Outline

• Introduction

• Overview of Execution Environments
 • Parallel and Distributed DNN Training
 • Latest Trends in HPC Technologies
 • Challenges in Exploiting HPC Technologies for Deep Learning
 • Solutions and Case Studies
 • Open Issues and Challenges
 • Conclusion
So where do we run our DL framework?

• Early (2014) frameworks used a single fast GPU
 – As DNNs became larger, faster and better GPUs became available
 – At the same time, parallel (multi-GPU) training gained traction as well

• Today
 – Parallel training on multiple GPUs is being supported by most frameworks
 – Distributed (multiple nodes) training is still upcoming
 • A lot of fragmentation in the efforts (MPI, Big-Data, NCCL, Gloo, etc.)
 – On the other hand, DL has made its way to Mobile and Web too!
 • Smartphones - OK Google, Siri, Cortana, Alexa, etc.
 • DrivePX – the computer that drives NVIDIA’s self-driving car
 • Very recently, Google announced Deeplearn.js (a DL framework in a web-browser)
 • TensorFlow playground - http://playground.tensorflow.org/
Conventional Execution on GPUs and CPUs

• My framework is faster than your framework!
• This needs to be understood in a holistic way.
• Performance depends on the entire execution environment (the full stack)
• Isolated view of performance is not helpful

DL Frameworks and Underlying Libraries

- **BLAS Libraries** – the heart of math operations
 - Atlas/OpenBLAS
 - NVIDIA cuBlas
 - Intel Math Kernel Library (MKL)

- Most compute intensive layers are generally optimized for a specific hardware
 - E.g. Convolution Layer, Pooling Layer, etc.

- **DNN Libraries** – the heart of Convolutions!
 - NVIDIA cuDNN (already reached its 7th iteration – cudnn-v7)
 - Intel MKL-DNN (MKL 2017) – recent but a very promising development
Where does the Performance come from?

- Performance Improvements can be observed because of:
 - Faster convolutions with each successive cuDNN version
 - Faster hardware and more FLOPS as we move from: K-80 -> P-100 -> V-100

Courtesy: https://developer.nvidia.com/cudnn
Differences in How Vendors Report Performance

- NVIDIA reports performance [1] with the basic Caffe version (no multi-threading and no optimized MKL support)
- Intel reports [2] performance gains over the same basic Caffe version
- *Hence, the need for a holistic and fair comparison!!*

An In-depth Comparison for CPU and GPU based Training (OSU)

- The full landscape for AlexNet training: Forward and Backward Pass
- **Faster Convolutions → Faster Training**
- Key Takeaway: **KNL-opt (CPU) is comparable to Pascal P100 (GPU)!**

Outline

• Introduction
• Overview of Execution Environments

• Parallel and Distributed DNN Training
 • Latest Trends in HPC Technologies
 • Challenges in Exploiting HPC Technologies for Deep Learning
 • Solutions and Case Studies
 • Open Issues and Challenges
• Conclusion
The Need for Parallel and Distributed Training

• Why do we need Parallel Training?

• Larger and Deeper models are being proposed
 – AlexNet to ResNet to Neural Machine Translation (NMT)
 – DNNs require a lot of memory
 – Larger models cannot fit a GPU’s memory

• Single GPU training became a bottleneck

• As mentioned earlier, community has already moved to multi-GPU training

• Multi-GPU in one node is good but there is a limit to Scale-up (8 GPUs)

• Multi-node (Distributed or Parallel) Training is necessary!!
Batch-size, Model-size, Accuracy, and Scalability

- Increasing model-size generally increases accuracy.
- Increasing batch-size requires tweaking hyper-parameters to maintain accuracy:
 - Limits for batch-size
 - Cannot make it infinitely large
 - Over-fitting
- **Large batch size generally helps scalability**
 - More work to do before the need to synchronize
- Increasing the model-size (no. of parameters):
 - Communication overhead becomes bigger so scalability decreases
 - GPU memory is precious and can only fit finite model data

Benefits of Distributed Training: An Example with Caffe

- Strong scaling CIFAR10 Training with OSU-Caffe (1 → 4 GPUs) – **Batch Size 2K**
- Large batch size is needed for scalability.
- Adding more GPUs may degrade the scaling efficiency

Run Command - (change $np from 1—4)

```bash
mpirun_rsh -np $np ./build/tools/caffe train -solver examples/cifar10/cifar10_quick_solver.prototxt -scal strong
```


OSU-Caffe is available from the HiDL project page http://hidl.cse.ohio-state.edu
Parallelization Strategies

- What are the Parallelization Strategies
 - Model Parallelism
 - Data Parallelism (Received the most attention)
 - Hybrid Parallelism
 - Automatic Selection

Automatic Selection of Parallelization Strategies

Tofu’s tiling for VGG-19 on 8 GPUs

Data Parallelism

Hybrid Parallelism
- 8 GPUs into 4 groups
- Data parallelism among groups
- Model parallelism within each group (tile on channel)

Model Parallelism
- Tile on both row and column for weight matrices

Batch Size: 64

VGG-19

output size: 224
3x3 conv, 64
pool, /2
3x3 conv, 128
pool, /2
3x3 conv, 256
output size: 112
x 4
3x3 conv, 128
output size: 56
pool, /2
3x3 conv, 512
output size: 28
x 4
3x3 conv, 512
output size: 14
pool, /2
3x3 conv, 512
output size: 7
fc 4096
fc 4096
output size: 1
fc 1000

Communication in Distributed Frameworks

• What are the Design Choices for Communication?
 – Established paradigms like Message Passing Interface (MPI)
 – Develop specific communication libraries like NCCL, Gloo, Baidu-allreduce, etc.
 – Use Big-Data frameworks like Spark, Hadoop, etc.
 • Still need some form of external communication for parameters (RDMA, InfiniBand, etc.)

• Focus on Scale-up and Scale-out
 – What are the challenges and opportunities?
Scale-up and Scale-out

- **Scale-up**: Intra-node Communication
 - Many improvements like:
 - NVIDIA cuDNN, cuBLAS, NCCL, etc.
 - CUDA 9 Co-operative Groups

- **Scale-out**: Inter-node Communication
 - DL Frameworks – most are optimized for single-node only
 - Distributed (Parallel) Training is an emerging trend
 - OSU-Caffe – MPI-based
 - Microsoft CNTK – MPI/NCCL2
 - Google TensorFlow – gRPC-based/MPI/NCCL2
 - Facebook Caffe2 – Hybrid (NCCL2/Gloo/MPI)
Data Parallel Deep Learning and MPI Collectives

- **Major MPI Collectives** involved in Designing distributed frameworks
- **MPI_Bcast** – required for DNN parameter exchange
- **MPI_Reduce** – needed for gradient accumulation from multiple solvers
- **MPI_Allreduce** – use just one Allreduce instead of Reduce and Broadcast

Outline

- Introduction
- Overview of Execution Environments
- Parallel and Distributed DNN Training
- **Latest Trends in HPC Technologies**
 - Challenges in Exploiting HPC Technologies for Deep Learning
 - Solutions and Case Studies
 - Open Issues and Challenges
- Conclusion
Drivers of Modern HPC Cluster Architectures

- Multi-core/many-core technologies
- Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)
- Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD
- Accelerators (NVIDIA GPGPUs and Intel Xeon Phi)

Multi-core Processors

High Performance Interconnects - InfiniBand
<1usec latency, 100Gbps Bandwidth>

Accelerators / Coprocessors
high compute density, high performance/watt
>1 TFlop DP on a chip

SSD, NVMe-SSD, NVRAM

Tianhe – 2
Titan
Stampede
Tianhe – 1A
HPC Technologies

• Hardware
 – Interconnects – InfiniBand, RoCE, Omni-Path, etc.
 – Processors – GPUs, Multi-/Many-core CPUs, Tensor Processing Unit (TPU), FPGAs, etc.
 – Storage – NVMe, SSDs, Burst Buffers, etc.

• Communication Middleware
 – Message Passing Interface (MPI)
 • CUDA-Aware MPI, Many-core Optimized MPI runtimes (KNL-specific optimizations)
 – NVIDIA NCCL
Network Speed Acceleration with IB and HSE

<table>
<thead>
<tr>
<th>Network Type</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet (1979 -)</td>
<td>10 Mbit/sec</td>
</tr>
<tr>
<td>Fast Ethernet (1993 -)</td>
<td>100 Mbit/sec</td>
</tr>
<tr>
<td>Gigabit Ethernet (1995 -)</td>
<td>1000 Mbit/sec</td>
</tr>
<tr>
<td>ATM (1995 -)</td>
<td>155/622/1024 Mbit/sec</td>
</tr>
<tr>
<td>Myrinet (1993 -)</td>
<td>1 Gbit/sec</td>
</tr>
<tr>
<td>Fibre Channel (1994 -)</td>
<td>1 Gbit/sec</td>
</tr>
<tr>
<td>InfiniBand (2001 -)</td>
<td>2 Gbit/sec (1X SDR)</td>
</tr>
<tr>
<td>10-Gigabit Ethernet (2001 -)</td>
<td>10 Gbit/sec</td>
</tr>
<tr>
<td>InfiniBand (2003 -)</td>
<td>8 Gbit/sec (4X SDR)</td>
</tr>
<tr>
<td>InfiniBand (2005 -)</td>
<td>16 Gbit/sec (4X DDR)</td>
</tr>
<tr>
<td>InfiniBand (2007 -)</td>
<td>24 Gbit/sec (12X SDR)</td>
</tr>
<tr>
<td>40-Gigabit Ethernet (2010 -)</td>
<td>32 Gbit/sec (4X QDR)</td>
</tr>
<tr>
<td>InfiniBand (2011 -)</td>
<td>40 Gbit/sec</td>
</tr>
<tr>
<td>InfiniBand (2012 -)</td>
<td>54.6 Gbit/sec (4X FDR)</td>
</tr>
<tr>
<td>25-/50-Gigabit Ethernet (2014 -)</td>
<td>2 x 54.6 Gbit/sec (4X Dual-FDR)</td>
</tr>
<tr>
<td>100-Gigabit Ethernet (2015 -)</td>
<td>25/50 Gbit/sec</td>
</tr>
<tr>
<td>Omni-Path (2015 -)</td>
<td>100 Gbit/sec</td>
</tr>
<tr>
<td>InfiniBand (2015 -)</td>
<td>100 Gbit/sec (4X EDR)</td>
</tr>
<tr>
<td>InfiniBand (2016 -)</td>
<td>200 Gbit/sec (4X HDR)</td>
</tr>
</tbody>
</table>

100 times in the last 15 years
InfiniBand Link Speed Standardization Roadmap

XDR = eXtreme Data Rate
NDR = Next Data Rate
HDR = High Data Rate
EDR = Enhanced Data Rate
FDR = Fourteen Data Rate
QDR = Quad Data Rate
DDR = Double Data Rate (not shown)
SDR = Single Data Rate (not shown)

© 2015 InfiniBand® Trade Association

Courtesy: InfiniBand Trade Association
Trends in Microprocessor Technology

- Small, yet steady increase in single thread performance
- Rapid increase in number of transistors per chip
- Power consumption has remained more or less constant
- Rapid increase in number of cores
- Latest Intel Knights Mill expected to have DL optimized hardware

Courtesy: https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
Trends in GPU Technology

- NVIDIA Volta is optimized for Deep Learning workloads
 - has dedicated “Tensor Cores” (FP16 or half precision) for both Training and Inference
 - 2.4X faster than Pascal GPUs for ResNet-50 training

Courtesy: https://devblogs.nvidia.com/parallelforall/inside-volta/

Google TPU

- CISC style instruction set
- Uses systolic arrays as the heart of multiply unit

Intel Neural Network Processor (NNP)

- Intel® Nervana™ Neural Network Processors (NNP)
 - formerly known as “Lake Crest”
- Recently announced as part of Intel’s strategy for next-gen. AI systems
- Purpose built architecture for deep learning
- 1 TB/s High Bandwidth Memory (HBM)
- Spatial Architecture
- FlexPoint format
 - Similar performance (in terms of accuracy) to FP32 while using 16 bits of storage

• New processor that’s the first to be specifically designed for machine intelligence workloads – an Intelligence Processing Unit (IPU)
 – Massively parallel
 – Low-precision floating-point compute
 – Higher compute density
• UK-based Startup
• Early benchmarks show 10-100x speedup over GPUs
 – Presented at NIPS 2017

Courtesy: https://www.graphcore.ai/posts/preliminary-ipu-benchmarks-providing-previously-unseen-performance-for-a-range-of-machine-learning-applications
Poplar Graph Programming Framework

- Poplar -- graph programming framework for IPU accelerated platforms
- C++ framework that provides a seamless interface DL frameworks like Tensorflow and MXNet
- Existing applications written for Tensorflow will work out of the box on an IPU.
- Set of drivers, application libraries and debugging and analysis tools

https://www.graphcore.ai/hubfs/assets/Poplar%20technical%20overview%20NEW%20BRAND.pdf
Trends in High-Performance Storage

<table>
<thead>
<tr>
<th>NVMe</th>
<th>NVRAM</th>
<th>3D XPoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>High Speed interface for SSDs in a PCIe form factor used as block storage</td>
<td>Non-volatile DRAM backed up by battery or super capacitor used as byte addressable memory</td>
</tr>
<tr>
<td>Form Factor</td>
<td>Connects to PCIe bus</td>
<td>Connects to a DDR3 DIMM slot</td>
</tr>
<tr>
<td>Max Capacity</td>
<td>2 TB</td>
<td>16GB</td>
</tr>
<tr>
<td>Read IOPS (Random)</td>
<td>750,000</td>
<td>1.4 Million</td>
</tr>
<tr>
<td>Write IOPS (Random)</td>
<td>430,000</td>
<td>1.4 Million</td>
</tr>
<tr>
<td>Latency</td>
<td>15 Microseconds</td>
<td>10 Nanoseconds</td>
</tr>
<tr>
<td>Ideal Use Cases</td>
<td>Caching Tier: Transactional workloads requiring high IOPS</td>
<td>Byte Addressable memory for metadata & client side caching, reduce write amplification</td>
</tr>
<tr>
<td>Price ($/Gig)</td>
<td>$$$</td>
<td>$$$$</td>
</tr>
</tbody>
</table>

HPC Technologies

• Hardware
 – Interconnects – InfiniBand, RoCE, Omni-Path, etc.
 – Processors – GPUs, Multi-/Many-core CPUs, Tensor Processing Unit (TPU), FPGAs, etc.
 – Storage – NVMe, SSDs, Burst Buffers, etc.

• Communication Middleware
 – Message Passing Interface (MPI)
 • CUDA-Aware MPI, Many-core Optimized MPI runtimes (KNL-specific optimizations)
 – NVIDIA NCCL
Parallel Programming Models Overview

- Programming models provide abstract machine models
- Models can be mapped on different types of systems
 - e.g. Distributed Shared Memory (DSM), MPI within a node, etc.
- PGAS models and Hybrid MPI+PGAS models are gradually receiving importance
MPI Features and Implementations

• Major MPI features
 – Point-to-point Two-sided Communication
 – Collective Communication
 – One-sided Communication

• Message Passing Interface (MPI)
 – MVAPICH2
 – OpenMPI, IntelMPI, CrayMPI, IBM Spectrum MPI
 – And many more...
Allreduce Collective Communication Pattern

- Element-wise Sum data from all processes and sends to all processes

```c
int MPI_Allreduce (const void *sendbuf, void * recvbuf, int count, MPI_Datatype datatype,
    MPI_Op operation, MPI_Comm comm)
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sendbuf</td>
<td>Starting address of send buffer</td>
</tr>
<tr>
<td>recvbuf</td>
<td>Starting address of recv buffer</td>
</tr>
<tr>
<td>type</td>
<td>Data type of buffer elements</td>
</tr>
<tr>
<td>count</td>
<td>Number of elements in the buffers</td>
</tr>
<tr>
<td>operation</td>
<td>Reduction operation to be performed (e.g. sum)</td>
</tr>
<tr>
<td>comm</td>
<td>Communicator handle</td>
</tr>
</tbody>
</table>

Sendbuf (Before)

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Recvbuf (After)

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
</tr>
</tbody>
</table>
Overview of the MVAPICH2 Project

- High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
 - MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002
 - MVAPICH2-X (MPI + PGAS), Available since 2011
 - Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
 - Support for Virtualization (MVAPICH2-Virt), Available since 2015
 - Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
 - Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

- Used by more than 2,875 organizations in 86 countries

- More than 461,000 (> 0.46 million) downloads from the OSU site directly

- Empowering many TOP500 clusters (Nov ‘17 ranking)
 - 1st, 10,649,600-core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China
 - 9th, 556,104 cores (Oakforest-PACS) in Japan
 - 12th, 368,928-core (Stampede2) at TACC
 - 17th, 241,108-core (Pleiades) at NASA
 - 48th, 76,032-core (Tsubame 2.5) at Tokyo Institute of Technology

- Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)
 - http://mvapich.cse.ohio-state.edu

- Empowering Top500 systems for over a decade
GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GDR

- Standard MPI interfaces used for unified data movement
- Takes advantage of Unified Virtual Addressing (>= CUDA 4.0)
- Overlaps data movement from GPU with RDMA transfers

At Sender:

\[\text{MPI_Send}(s_devbuf, \text{size}, \ldots); \]

At Receiver:

\[\text{MPI_Recv}(r_devbuf, \text{size}, \ldots); \]

High Performance and High Productivity
Optimized MVAPICH2-GDR Design

Intel Haswell (E5-2687W @ 3.10 GHz) node - 20 cores
NVIDIA Volta V100 GPU
Mellanox Connect-X4 EDR HCA
CUDA 9.0
Mellanox OFED 4.0 with GPU-Direct-RDMA
NCCL Communication Library

• Collective Communication with a caveat!
 - GPU buffer exchange
 - **Dense Multi-GPU** systems
 (Cray CS-Storm, DGX-1)
 - MPI-like – but not MPI standard compliant

• NCCL (pronounced Nickel)
 - Open-source Communication Library by NVIDIA
 - Topology-aware, ring-based (linear) collective communication library for GPUs
 - Divide bigger buffers to smaller chunks
 - Good performance for large messages
 - Kernel-based threaded copy (Warp-level Parallel) instead of cudaMemcpy

[Diagram showing broadcast communication]

Outline

• Introduction
• Overview of Execution Environments
• Parallel and Distributed DNN Training
• Latest Trends in HPC Technologies

• Challenges in Exploiting HPC Technologies for Deep Learning
 • Solutions and Case Studies
 • Open Issues and Challenges
• Conclusion
Broad Challenge: Exploiting HPC for Deep Learning

How to efficiently scale-out a Deep Learning (DL) framework and take advantage of heterogeneous High Performance Computing (HPC) resources?
1. What are the fundamental issues in designing DL frameworks?
 - Memory Requirements
 - Computation Requirements
 - Communication Overhead

2. Why do we need to support distributed training?
 - To overcome the limits of single-node training
 - To better utilize hundreds of existing HPC Clusters
3. **What are the new design challenges** brought forward by DL frameworks for Communication runtimes?
 - Large Message **Collective Communication** and Reductions
 - GPU Buffers (**CUDA-Awareness**)

4. **Can a Co-design approach help in achieving Scale-up and Scale-out efficiently?**
 - Co-Design the support at **Runtime level** and Exploit it at the **DL Framework level**
 - What performance benefits can be observed?
 - What needs to be fixed at the **communication runtime** layer?
• What are the new requirements and expectations for Communication Runtimes?
 • Efficiently handle very-large buffer sizes
 • Megabytes (MB) for now
 • Expect Gigabytes (GB) in future
 • New algorithms and implementations will be needed!
 • GPU buffers in existing DL frameworks
 • Importance of efficient CUDA-Aware MPI will increase even more!

• Can MPI provide a holistic solution to this problem?
Outline

- Introduction
- Overview of Execution Environments
- Parallel and Distributed DNN Training
- Latest Trends in HPC Technologies
- Challenges in Exploiting HPC Technologies for Deep Learning
- **Solutions and Case Studies**
 - Open Issues and Challenges
 - Conclusion
Solutions and Case Studies: Exploiting HPC for DL

- **NVIDIA NCCL**
- Baidu-allreduce
- Facebook Gloo
- Co-design MPI runtimes and DL Frameworks
 - MPI+NCCL for CUDA-Aware CNTK
 - OSU-Caffe
- TensorFlow (Horovod)
- Scaling DNN Training on Multi-/Many-core CPUs
- PowerAI DDL
NVIDIA NCCL

• NCCL is a collective communication library
 – NCCL 1.x is only for Intra-node communication on a single-node
• NCCL 2.0 supports inter-node communication as well
• Design Philosophy
 – Use Rings and CUDA Kernels to perform efficient communication
• NCCL is optimized for dense multi-GPU systems like the DGX-1 and DGX-1V

Courtesy: https://www.nextplatform.com/2016/05/04/nvlink-takes-gpu-acceleration-next-level/

Fully connected quad
120 GB/s per GPU bidirectional for peer traffic
40 GB/s per GPU bidirectional to CPU
Direct Load/store access to CPU Memory
High Speed Copy Engines for bulk data movement
NCCL2: Multi-node GPU Collectives

MVAPICH2-GDR vs. NCCL2 – Broadcast Operation

- Optimized designs in MVAPICH2-GDR 2.3b* offer better/comparable performance for most cases
- MPI_Bcast (MVAPICH2-GDR) vs. ncclBcast (NCCL2) on 16 K-80 GPUs

*Will be available with upcoming MVAPICH2-GDR 2.3b

Platform: Intel Xeon (Broadwell) nodes equipped with a dual-socket CPU, 2 K-80 GPUs, and EDR InfiniBand Inter-connect
MVAPICH2-GDR vs. NCCL2 – Reduce Operation

- Optimized designs in MVAPICH2-GDR 2.3b* offer better/comparable performance for most cases
- MPI_Reduce (MVAPICH2-GDR) vs. ncclReduce (NCCL2) on 16 GPUs

*Will be available with upcoming MVAPICH2-GDR 2.3b
Platform: Intel Xeon (Broadwell) nodes equipped with a dual-socket CPU, 1 K-80 GPUs, and EDR InfiniBand Inter-connect
MVAPICH2-GDR vs. NCCL2 – Allreduce Operation

- Optimized designs in MVAPICH2-GDR 2.3b* offer better/comparable performance for most cases
- MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 16 GPUs

*Will be available with upcoming MVAPICH2-GDR 2.3b

Platform: Intel Xeon (Broadwell) nodes equipped with a dual-socket CPU, 1 K-80 GPUs, and EDR InfiniBand Inter-connect
Solutions and Case Studies: Exploiting HPC for DL

- NVIDIA NCCL
- Baidu-allreduce
- Facebook Gloo
- Co-design MPI runtimes and DL Frameworks
 - MPI+NCCL for CUDA-Aware CNTK
 - OSU-Caffe
- TensorFlow (Horovod)
- Scaling DNN Training on Multi-/Many-core CPUs
- PowerAI DDL
Baidu-allreduce in TensorFlow

- Baidu uses large message Allreduce collectives
- Evaluation with OpenMPI Allreduce showed performance degradation
- Proposed Solution:
 - Implement a Ring-Allreduce algorithm on top of point to point MPI primitives (Send/Recv) at the application level
- 2.5-3X better than OpenMPI Allreduce
- Used in the Deep Speech 2 paper*

Data Parallel Training with Baidu-allreduce

- Near-linear speedup for DNN training throughput (samples/second)
- The Allreduce design has been integrated in a TensorFlow contribution
- Details of the design are available from the Github site: https://github.com/baidu-research/tensorflow-allreduce

Courtesy: http://research.baidu.com/bringing-hpc-techniques-deep-learning/
MVAPICH2: Allreduce Comparison with Baidu and OpenMPI

- 16 GPUs (4 nodes) MVAPICH2-GDR vs. Baidu-Allreduce and OpenMPI 3.0

Available with MVAPICH2-GDR 2.3a
Solutions and Case Studies: Exploiting HPC for DL

- NVIDIA NCCL
- Baidu-allreduce
- Facebook Gloo
- Co-design MPI runtimes and DL Frameworks
 - MPI+NCCL for CUDA-Aware CNTK
 - OSU-Caffe
- TensorFlow (Horovod)
- Scaling DNN Training on Multi-/Many-core CPUs
- PowerAI DDL

Deep Learning and Machine Learning Frameworks

- Caffe
- Caffe2
- OSU-Caffe
- TensorFlow
- MXNet

Major Computation and Communication Phases in DL Frameworks

- Model Propagation
- Forward Backward
- Gradient Aggregation

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

- Point-to-Point Operations
- CUDA-Awareness
- Large-message Collectives (Baidu-allreduce)

HPC Platforms

- CPU
- InfiniBand
- GPU
Facebook Caffe2

- Caffe2 (by Facebook) allows the use of multiple communication back-ends
 - Gloo – Multi-node design from the beginning
 - NCCL – Multi-node support added recently in v2
- Gloo – Performance evaluation studies not available yet
- Design principles are similar to MPI and NCCL
- In essence, Gloo is an application level implementation of collective algorithms for Reduce, Allreduce, etc.
- Details and code available from: https://github.com/facebookincubator/gloo
Gloo

• Gloo comes with a number of collective algorithms useful for machine learning applications
 – Barrier
 – Broadcast
 – Allreduce

• Transport of data between participating machines is abstracted so that IP can be used at all times, or InfiniBand (or RoCE) when available

• If InfiniBand transport is used, GPUDirect can be used to accelerate cross machine GPU-to-GPU memory transfers

• Implementation that works with system memory buffers, and one that works with NVIDIA GPU memory buffers. (CUDA-Aware)
Facebook: Training ImageNet in 1 Hour

- Near-linear Scaling for ~256 Pascal GPUs (Facebook Big Basin Servers with 8 GPUs/node)
- Explored large batch-size training with ResNet-50
 - *8K batch-size seems to be the sweet-spot.*

Courtesy: https://research.fb.com/publications/imagenet1kin1h/
Solutions and Case Studies: Exploiting HPC for DL

- NVIDIA NCCL
- Baidu-allreduce
- Facebook Gloo
- Co-design MPI runtimes and DL Frameworks
 - MPI+NCCL for CUDA-Aware CNTK
 - OSU-Caffe
- TensorFlow (Horovod)
- Scaling DNN Training on Multi-/Many-core CPUs
- PowerAI DDL

Deep Learning and Machine Learning Frameworks

- CNTK
- Caffe/OSU-Caffe
- Caffe2
- TensorFlow
- MXNet

Major Computation and Communication Phases in DL Frameworks
- Model Propagation
- Forward Backward
- Gradient Aggregation

Communication Runtimes (MPI/NCCL/Gloo/MLSL)
- Point-to-Point Operations
- CUDA-Awareness
- Large-message Collectives
 - Hierarchical Reduce (HR)
 - NCCL-Bcast/MPI_Bcast

HPC Platforms
- CPU
- InfiniBand
- GPU

Hierarchical Reduce (HR)

Co-Design Opportunities
MPI+NCCL: Can we exploit NCCL to accelerate MPI?

- CUDA-Aware MPI provides excellent performance for small and medium message sizes
- NCCL has overhead for small messages but provides excellent performance for large messages
- Can we have designs that provide good performance for intra-node communication and inter-node scalability?
 - Exploit NCCL1 for intra-node inter-GPU communication
 - Design and utilize existing Inter-node communication in MVAPICH2-GDR

Application Performance with Microsoft CNTK (64 GPUs)

- Microsoft CNTK is a popular and efficient DL framework
- CA-CNTK is a CUDA-Aware version developed at OSU
- Proposed Broadcast provides up to 47% improvement in Training time for the VGG network
Solutions and Case Studies: Exploiting HPC for DL

- NVIDIA NCCL
- Baidu-allreduce
- Facebook Gloo
- **Co-design MPI runtimes and DL Frameworks**
 - MPI+NCCL for CUDA-Aware CNTK
 - **OSU-Caffe**
- TensorFlow (Horovod)
- Scaling DNN Training on Multi-/Many-core CPUs
- PowerAI DDL
OSU-Caffe: Proposed Co-Design Overview

• To address the limitations of Caffe and existing MPI runtimes, we propose the **OSU-Caffe (S-Caffe)** framework

• At the application (DL framework) level
 – Develop a fine-grain workflow – i.e. layer-wise communication instead of communicating the entire model

• At the runtime (MPI) level
 – Develop support to perform reduction of very-large GPU buffers
 – Perform reduction using GPU kernels

OSU-Caffe is available from the HiDL project page
(http://hidl.cse.ohio-state.edu)
Hierarchical Reduce (HR) - 160 GPUs

- Various designs to achieve best performance across platforms
- Proposed HR-tuned provides the best performance (up to 2.5X)
S-Caffe, Inspur-Caffe, and CNTK

- AlexNet: Notoriously hard to scale-out on multiple nodes due to comm. overhead!
- Large number of parameters ~ 64 Million (comm. buffer size = 256 MB)

- GoogLeNet is a popular DNN
- 13 million parameters (comm. buffer size = ~50 MB)

S-Caffe delivers better or comparable performance with other multi-node capable DL frameworks

Up to 14% improvement (Scale-up)
Solutions and Case Studies: Exploiting HPC for DL

- NVIDIA NCCL
- Baidu-allreduce
- Facebook Gloo
- Co-design MPI runtimes and DL Frameworks
 - MPI+NCCL for CUDA-Aware CNTK
 - OSU-Caffe
- TensorFlow (Horovod)
- Scaling DNN Training on Multi-/Many-core CPUs
- PowerAI DDL
TensorFlow (Horovod)

- Baidu had a TensorFlow design that utilizes MPI library for gradient aggregation via a custom Allreduce design
 - Part of TensorFlow/contrib/
- Uber has built **Horovod** inspired by Baidu’s approach but it provides a separate and easier installation process via pip
- Horovod uses **MPI_Allreduce** or **ncclAllreduce** depending on the build process a user follows
- TensorFusion optimization in Horovod to exploit efficient large message exchange
- More details available from: https://github.com/uber/horovod
Horovod Training (Synthetic Data)

- Official distributed TensorFlow uses gRPC – which can use TCP or RDMA interface
- Horovod can also use TCP or RDMA.
 - RDMA has much better performance, as expected

![Graph showing training with synthetic data on NVIDIA® Pascal™ GPUs](https://github.com/uber/horovod)
Solutions and Case Studies: Exploiting HPC for DL

- NVIDIA NCCL
- Baidu-allreduce
- Facebook Gloo
- Co-design MPI runtimes and DL Frameworks
 - MPI+NCCL for CUDA-Aware CNTK
 - OSU-Caffe
- TensorFlow (Horovod)
- Scaling DNN Training on Multi-/Many-core CPUs
- PowerAI DDL
Optimizing and Scaling DL on Intel CPUs

Courtesy: https://www.nextplatform.com/2016/06/21/knights-landing-solid-ground-intels-stake-deep-learning/
Optimizing NeuralTalk on Intel CPUs with Intel MKL

![Graph showing optimization of NeuralTalk2](https://colfaxresearch.com/isc16-neuraltalk/)

Courtesy: https://colfaxresearch.com/isc16-neuraltalk/
Caffe2 Performance Optimization with Intel MKL

<table>
<thead>
<tr>
<th>batch size</th>
<th>OMP_NUM_THREADS=44</th>
<th>OMP_NUM_THREADS=1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intel® MKL (images/sec)</td>
<td>Eigen BLAS (images/sec)</td>
</tr>
<tr>
<td>1</td>
<td>173.4</td>
<td>5.2</td>
</tr>
<tr>
<td>32</td>
<td>1500.2</td>
<td>29.3</td>
</tr>
<tr>
<td>64</td>
<td>1596.3</td>
<td>35.3</td>
</tr>
<tr>
<td>256</td>
<td>1735.2</td>
<td>44.9</td>
</tr>
</tbody>
</table>

TensorFlow Optimization for Intel CPUs

26x Speedup From New Optimizations – available through Google’s TensorFlow Git

Intel Machine Learning Scaling Library (MLSL)

- Intel MLSL is built on top of MPI primitives
 - https://github.com/01org/MLSL
- Works across various interconnects: Intel(R) Omni-Path Architecture, InfiniBand*, and Ethernet
- Common API to support Deep Learning frameworks (Caffe*, Theano*, Torch*, etc.)

<table>
<thead>
<tr>
<th>MLSL::Activation</th>
<th>A wrapper class for operation input and output activations</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLSL::CommBlockInfo</td>
<td>A class to hold block information for activations packing/unpacking</td>
</tr>
<tr>
<td>MLSL::Distribution</td>
<td>A class to hold the information about the parallelism scheme being used</td>
</tr>
<tr>
<td>MLSL::Environment</td>
<td>A singleton object that holds global Intel MLSL functions</td>
</tr>
<tr>
<td>MLSL::Operation</td>
<td>A class to hold information about learnable parameters (parameter sets) and activations corresponding to a certain operation of the computational graph</td>
</tr>
<tr>
<td>MLSL::OperationRegInfo</td>
<td>A class to hold Operation registration information</td>
</tr>
<tr>
<td>MLSL::ParameterSet</td>
<td>A wrapper class for operation parameters</td>
</tr>
<tr>
<td>MLSL::Session</td>
<td>A class to represent a collection of Operation objects with the same global mini-batch size</td>
</tr>
<tr>
<td>MLSL::Statistics</td>
<td>A class to measure and store performance statistics of communication among processes that perform computation in the computational graph</td>
</tr>
</tbody>
</table>

Courtesy: https://github.com/01org/MLSL
Solutions and Case Studies: Exploiting HPC for DL

- NVIDIA NCCL
- Baidu-allreduce
- Facebook Gloo
- Co-design MPI runtimes and DL Frameworks
 - MPI+NCCL for CUDA-Aware CNTK
 - OSU-Caffe
- TensorFlow (Horovod)
- Scaling DNN Training on Multi-/Many-core CPUs
- PowerAI DDL
IBM PowerAI DDL

IBM PowerAI Platform

PowerAI Software Distribution

Deep Learning Frameworks
- Caffe
- NVIDIA Caffe
- IBM Caffe
- torch
- TensorFlow
- Theano
- Chainer

Supporting Libraries
- DIGITS
- OpenBLAS
- Distributed Frameworks
- Bazel
- NCCL

IBM Power System for HPC, with NVLink
Breakthrough performance for GPU accelerated applications, including Deep Learning and Machine Learning.

PowerAI DDL Performance

Caffe with PowerAI DDL on ResNet-50 model using the ImageNet-1K data set on 64 Power8 servers

Courtesy:
Outline

• Introduction
• Overview of Execution Environments
• Parallel and Distributed DNN Training
• Latest Trends in HPC Technologies
• Challenges in Exploiting HPC Technologies for Deep Learning
• Solutions and Case Studies
• **Open Issues and Challenges**
• Conclusion
Open Issues and Challenges

• Which Framework should I use?
• Convergence of DL and HPC
• Scalability and Large batch-size training?
• DL Benchmarks and Thoughts on Standardization
• Open Exchange and Making AI accessible?
Which Framework should I use?

- Depends on the higher-level Application needs
 - Image, Speech, Sequences, etc.
- Depends on the hardware availability
 - GPUs are good in general
 - If you have Intel CPUs, Intel-Caffe and Intel-optimized TensorFlow are a good start
- Also depends upon your programming knowledge and requirements
 - Python frontend or C++ frontend?
 - Model designer tools needed?
 - Keras can use other DL frameworks as a back-end and provides a high-level interface.
Convergence of DL and HPC

• Is Deep Learning an HPC Problem?
 – Distributed DNN Training is definitely an HPC problem
 – Inference – not yet an HPC problem

• Why HPC can help?
 – Decades of research for communication models and performance optimizations
 – MPI, PGAS, and other upcoming programming models and communication runtimes can help for “data-parallel” training

• Some of the needs for DNN training are an exact match
 – Compute intensive problem

• Some needs are new for distributed/parallel communication runtimes
 – Large Message Communication
 – CUDA-Aware Communication
Scalability and Large batch-size training?

• Large batch-size helps improve the scalability
 – Lesser communication and more compute before synchronization
 – Limits to large batch-size
 • DL community is actively exploring this area
 • HPC community can also investigate overlap and latency-hiding techniques

• Is there a limit to DNN size?
 – Noam Shazeer’s Outrageously Large Model (137 Billion Parameters)

• Out-of-core Training for GPUs?
 – Prune the network or selectively allocate/de-allocate memory on GPUs
Can we have a standardized interface?
 – Are we there yet?
 – Deep Learning Interface (DLI)? Inspired by Message Passing Interface (MPI)
 • What can be a good starting point?
 • Will it come from the HPC community or the DL community?
 • Can there be a collaboration across communities?

What about standard benchmarks?
 – Is there a need?
 – State-of-the-art
 • HKBU benchmarks - http://dlbench.comp.hkbu.edu.hk
 • Soumith Chintala’s benchmarks - https://github.com/soumith/convnet-benchmarks
Open Exchange and Making AI accessible?

• OpenAI – a company focused towards making AI accessible and open
 – Backed up by several industry partners
 • Amazon, Microsoft, Infosys, etc.
 – And individuals
 • Elon Musk, Peter Thiel, others.

• ONNX format
 – An open format to exchange trained models
 – Cross-framework compatibility
 – Created by Facebook and Microsoft
 – TensorFlow and CoreML (Apple) are also supported (Convertor only)
Outline

• Introduction
• Overview of Execution Environments
• Parallel and Distributed DNN Training
• Latest Trends in HPC Technologies
• Challenges in Exploiting HPC Technologies for Deep Learning
• Solutions and Case Studies
• Open Issues and Challenges

• Conclusion
Conclusion

• Exponential growth in Deep Learning frameworks

• Provided an overview of issues, challenges, and opportunities for communication runtimes
 – Efficient, scalable, and hierarchical designs are crucial for DL frameworks
 – Co-design of communication runtimes and DL frameworks will be essential
 • OSU-Caffe
 • TensorFlow (MATEX, Baidu, Uber, etc.)
 • Intel-Caffe and Intel-MLSL
 • Neon and Nervana Graph

• Need collaborative efforts to achieve the full potential

• Standardization may help remove fragmentation in DL frameworks
Funding Acknowledgments

Funding Support by

[Logos of various companies]

Equipment Support by

[Logos of various companies]
Personnel Acknowledgments

Current Students (Graduate)
- A. Awan (Ph.D.)
- R. Biswas (M.S.)
- M. Bayatpour (Ph.D.)
- S. Chakraborty (Ph.D.)
- C.-H. Chu (Ph.D.)
- S. Guganani (Ph.D.)

Current Students (Undergraduate)
- J. Hashmi (Ph.D.)
- H. Javed (Ph.D.)
- P. Kousha (Ph.D.)
- D. Shankar (Ph.D.)
- H. Shi (Ph.D.)
- J. Zhang (Ph.D.)

Current Research Scientists
- J. Liu (Ph.D.)
- M. Luo (Ph.D.)
- A. Mammadala (Ph.D.)
- G. Marsh (M.S.)
- V. Meshram (M.S.)
- A. Moody (M.S.)
- S. Naravula (Ph.D.)
- R. Noronha (Ph.D.)
- X. Ouyang (Ph.D.)
- S. Potluri (Ph.D.)

Current Post-doc
- A. Ruhela
- K. Manian

Past Students
- A. Augustine (M.S.)
- P. Balaji (Ph.D.)
- S. Bhagvat (M.S.)
- A. Bhat (M.S.)
- D. Buntinas (Ph.D.)
- L. Chai (Ph.D.)
- B. Chandrasekharan (M.S.)
- N. Dandapanthula (M.S.)
- V. Dhanraj (M.S.)
- T. Gangadharappa (M.S.)
- K. Gopalakrishnan (M.S.)
- W. Huang (Ph.D.)
- W. Jiang (M.S.)
- J. Jose (Ph.D.)
- S. Kini (M.S.)
- M. Koop (Ph.D.)
- K. Kulkarni (M.S.)
- R. Kumar (M.S.)
- S. Krishnamoorthy (M.S.)
- K. Kandalla (Ph.D.)
- M. Li (Ph.D.)
- P. Lai (M.S.)

Past Post-Docs
- D. Banerjee
- X. Besseron
- H.-W. Jin
- J. Lin
- M. Luo
- E. Mancini
- S. Marcarelli
- J. Vienne
- H. Wang

Current Research Specialist
- J. Smith
- M. Arnold

Past Programmers
- D. Bureddy
- J. Perkins

Past Research Scientist
- K. Hamidouche
- S. Sur

Past Research Scientist
- R. Rajachandrasekar (Ph.D.)
- G. Santhanaraman (Ph.D.)
- A. Singh (Ph.D.)
- J. Sridhar (M.S.)
- S. Sur (Ph.D.)
- H. Subramoni (Ph.D.)
- K. Vaidyanathan (Ph.D.)
- A. Vishnu (Ph.D.)
- J. Wu (Ph.D.)
- W. Yu (Ph.D.)
Thank You!

panda@cse.ohio-state.edu
awan.10@osu.edu
subramon@cse.ohio-state.edu

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The MVAPICH2 Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/
Appendix
(Details and Statistics related to DL Frameworks)
Berkeley (BVLC) Caffe

- Nearly 4,000 citations, usage by award papers at CVPR/ECCV/ICCV, and tutorials at ECCV'14 and CVPR'15
- Several efforts towards parallel/distributed training
 - OSU-Caffe - http://hidl.cse.ohio-state.edu/overview/
 - Intel-Caffe - https://github.com/intel/caffe
 - NVIDIA-Caffe - https://github.com/nvidia/caffe

<table>
<thead>
<tr>
<th>GitHub Statistics</th>
<th>2017 (August)</th>
<th>2018 (Jan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stars</td>
<td>15,000</td>
<td>22,367</td>
</tr>
<tr>
<td>Contributors</td>
<td>250</td>
<td>256</td>
</tr>
<tr>
<td>Forks</td>
<td>10,000</td>
<td>13,689</td>
</tr>
<tr>
<td>Commits</td>
<td>N/A</td>
<td>4,078</td>
</tr>
<tr>
<td>Releases</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>
Facebook Caffe2

- Official Parallel/Distributed Training support
- Modularity: Multiple communication back-ends supported
 - Facebook Gloo (Redis/MPI to bootstrap communication)
 - NVIDIA NCCL
 - Message Passing Interface (MPI)

<table>
<thead>
<tr>
<th>GitHub Statistics</th>
<th>2017 (August)</th>
<th>2018 (Jan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stars</td>
<td>5,000</td>
<td>6,844</td>
</tr>
<tr>
<td>Contributors</td>
<td>112</td>
<td>150</td>
</tr>
<tr>
<td>Forks</td>
<td>N/A</td>
<td>1,547</td>
</tr>
<tr>
<td>Commits</td>
<td>2,300</td>
<td>3,120</td>
</tr>
<tr>
<td>Releases</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Google TensorFlow

• Parallel/Distributed training
 – Official support through gRPC[1] library

• Several community efforts (TensorFlow/contrib)
 – MPI version by PNNL (MATEX) - https://github.com/matex-org/matex
 – MPI version by Baidu - https://github.com/baidu-research/tensorflow-allreduce
 – MPI+gRPC version by Minds.ai - https://www.minds.ai

<table>
<thead>
<tr>
<th>GitHub Statistics</th>
<th>2017 (August)</th>
<th>2018 (Jan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stars</td>
<td>67,000</td>
<td>86,205</td>
</tr>
<tr>
<td>Contributors</td>
<td>1,012</td>
<td>1,244</td>
</tr>
<tr>
<td>Forks</td>
<td>33,000</td>
<td>42,027</td>
</tr>
<tr>
<td>Commits</td>
<td>21,000</td>
<td>27,152</td>
</tr>
<tr>
<td>Releases</td>
<td>38</td>
<td>45</td>
</tr>
</tbody>
</table>

[1] https://grpc.io/
Microsoft Cognitive Toolkit (CNTK)

• Parallel and Distributed Training (MPI and NCCL2 support)
• Community efforts
 – OSU’s CUDA-Aware CNTK*

<table>
<thead>
<tr>
<th>GitHub Statistics</th>
<th>2017 (August)</th>
<th>2018 (Jan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stars</td>
<td>12,000</td>
<td>13,614</td>
</tr>
<tr>
<td>Contributors</td>
<td>146</td>
<td>161</td>
</tr>
<tr>
<td>Forks</td>
<td>3,000</td>
<td>3,565</td>
</tr>
<tr>
<td>Commits</td>
<td>14,000</td>
<td>15,359</td>
</tr>
<tr>
<td>Releases</td>
<td>N/A</td>
<td>33</td>
</tr>
</tbody>
</table>

Facebook Torch/PyTorch

- https://github.com/pytorch/pytorch
- Very active development
- Very recently got distributed training support
 - http://pytorch.org/docs/master/distributed.html

<table>
<thead>
<tr>
<th>GitHub Statistics</th>
<th>2017 (August)</th>
<th>2018 (Jan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stars</td>
<td>7,000</td>
<td>11,384</td>
</tr>
<tr>
<td>Contributors</td>
<td>287</td>
<td>385</td>
</tr>
<tr>
<td>Forks</td>
<td>1,300</td>
<td>2,357</td>
</tr>
<tr>
<td>Commits</td>
<td>4,200</td>
<td>6,159</td>
</tr>
<tr>
<td>Releases</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>
Preferred Networks Chainer/ChainerMN

- Preferred Networks (PN) is an NVIDIA Inception Program Startup
- Chainer is a very recent and emerging framework
- https://github.com/chainer/chainer

<table>
<thead>
<tr>
<th>GitHub Statistics</th>
<th>2017 (August)</th>
<th>2018 (Jan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stars</td>
<td>2,853</td>
<td>3,383</td>
</tr>
<tr>
<td>Contributors</td>
<td>134</td>
<td>152</td>
</tr>
<tr>
<td>Forks</td>
<td>753</td>
<td>904</td>
</tr>
<tr>
<td>Commits</td>
<td>10,455</td>
<td>12,397</td>
</tr>
<tr>
<td>Releases</td>
<td>48</td>
<td>56</td>
</tr>
</tbody>
</table>
Intel Neon

• Neon is a Deep Learning framework by Intel/Nervana
 - Works on CPUs as well as GPUs!
 - Neon - https://github.com/NervanaSystems/neon
 - Claims to be very efficient in terms of performance
 • https://github.com/soumith/convnet-benchmarks

<table>
<thead>
<tr>
<th>GitHub Statistics (Neon)</th>
<th>2018 (Jan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stars</td>
<td>3,389</td>
</tr>
<tr>
<td>Contributors</td>
<td>76</td>
</tr>
<tr>
<td>Forks</td>
<td>760</td>
</tr>
<tr>
<td>Commits</td>
<td>1,107</td>
</tr>
<tr>
<td>Releases</td>
<td>35</td>
</tr>
</tbody>
</table>