Brown Dog: An Elastic Data Cyberinfrastructure for Autocuration and Digital Preservation

Jay Alameda
National Center for Supercomputing Applications
University of Illinois at Urbana-Champaign
Acknowledgements

The Brown Dog team & coauthors:

This material is based upon work supported by the National Science Foundation under Grant Number NSF ACI-1261582: “CIF21 DIBBs: Brown Dog”

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
The Problem

• Large collections of unstructured and/or un-curated data

• Many data types and file formats

• Variety of existing software

• Short life span of digital data and software

• Hinders reproducibility of scientific results
An Example: Ecosystems and Climate Change

• Towards regional-scale high resolution estimates of plant life and carbon storage

• Scientific workflow and data assimilation system connecting a variety of models within the Ecology community to a variety of data sources

• Grown to 52 developers over the past 3 years
 • NCSA / U. Illinois, BU, Brookhaven National Lab, University of Wisconsin, University of Notre Dame, Utah State, Columbia University, Pacific Northwest National Laboratory, DuPont Pioneer, Exeter College, UK, U. Arizona, Dartmouth College
Ecosystems and Climate Change

• Models:
 • Ecosystem Demography (ED)
 • SIPNET
 • DALEC
 • ...

• Data:
 • Biofuel Ecophysiologival Trait and Yield Database (BETY)
 • Forest Inventory and Analysis (FIA)
 • North American Regional Reanalysis (NARR)
 • North American Carbon Program (NACP)
 • Food and Agriculture Organization (FAO)
 • …
Ecosystems and Climate Change

• Data with Unstructured Aspects:
 • MODIS (Multi-spectral)
 • Lidar
 • Palsar (Radar)
 • Aviris (Airborne Infrared Spectrometer)
 • Landsat (Images)

• Published results (e.g. tables, figures, plots)
 • Manually done to ingest into BETY
Ecosystems and Climate Change

• Settlement Vegetation data
• Born Physical
 • Paper, Microfiche, Alphanumeric/Color coded on vellum sheets
• Born Digital
 • PDF, JPEG, GIF, TIFF, XLS, XLSX, CSV, SHP, netCDF, HDF5, XML, GRIB, GRIB2, geoTIFF, DBF, BIL, BIP, ARC, SDTS, SRTM, IMG, UA, LGW, SXW, ODS
 • Ad hoc formats:
 • Spreadsheets
 • Databases
 • Services
 • R Data
 • Matlab Data
 • Document
Ecosystems and Climate Change

- Settlement Vegetation data
- Born Physical
 - Paper, Microfiche, Alphanumeric/Color coded on vellum sheets
- Born Digital
 - PDF, JPEG, GIF, TIFF, XLS, XLSX, CSV, SHP, netCDF, HDF5, XML, GRIB, GRIB2, geoTIFF, DBF, BIL, BIP, ARC, SDTS, SRTM, IMG, UA, LGW, SXW, ODS
 - Ad hoc formats:
 - Spreadsheets
 - Databases
 - Services
 - R Data
 - Matlab Data
- Document
- Image
Ecosystems and Climate Change

- Settlement Vegetation data
- Born Physical
 - Paper, Microfiche, Alphanumeric/Color coded on vellum sheets
- Born Digital
 - PDF, JPEG, GIF, TIFF, XLS, XLSX, CSV, SHP, netCDF, HDF5, XML, GRIB, GRIB2, geoTIFF, DBF, BIL, BIP, ARC, SDTS, SRTM, IMG, UA, LGW, SXW, ODS
- Ad hoc formats:
 - Spreadsheets
 - Databases
 - Services
 - R Data
 - Matlab Data
- Document
- Image
- Spatial
Ecosystems and Climate Change

- Settlement Vegetation data
- Born Physical
 - Paper, Microfiche, Alphanumeric/Color coded on vellum sheets
- Born Digital
 - PDF, JPEG, GIF, TIFF, XLS, XLSX, CSV, SHP, netCDF, HDF5, XML, GRIB, GRIB2, geoTIFF, DBF, BIL, BIP, ARC, SDTS, SRTM, IMG, UA, LGW, SXW, ODS
 - Ad hoc formats:
 - Spreadsheets
 - Databases
 - Services
 - R Data
 - Matlab Data
 - Document
 - Image
 - Spatial
 - Tabular
Ecosystems and Climate Change

- Settlement Vegetation data
- Born Physical
 - Paper, Microfiche, Alphanumeric/Color coded on vellum sheets
- Born Digital
 - PDF, JPEG, GIF, TIFF, XLS, XLSX, CSV, SHP, netCDF, HDF5, XML, GRIB, GRIB2, geoTIFF, DBF, BIL, BIP, ARC, SDTS, SRTM, IMG, UA, LGW, SXW, ODS
- Ad hoc formats:
 - Spreadsheets
 - Databases
 - Services
 - R Data
 - Matlab Data

- Document
- Image
- Spatial
- Tabular
- Weather
Ecosystems and Climate Change

- Settlement Vegetation data
- Born Physical
 - Paper, Microfiche, Alphanumeric/Color coded on vellum sheets
- Born Digital
 - PDF, JPEG, GIF, TIFF, XLS, XLSX, CSV, SHP, netCDF, HDF5, XML, GRIB, GRIB2, geoTIFF, DBF, BIL, BIP, ARC, SDTS, SRTM, IMG, UA, LGW, SXW, ODS
- Ad hoc formats:
 - Spreadsheets
 - Databases
 - Services
 - R Data
 - Matlab Data
- Document
- Image
- Spatial
- Tabular
- Weather
- 3D
Ecosystems and Climate Change

- Settlement Vegetation data
- Born Physical
 - Paper, Microfiche, Alphanumeric/Color coded on vellum sheets
- Born Digital
 - PDF, JPEG, GIF, TIFF, XLS, XLSX, CSV, SHP, netCDF, HDF5, XML, GRIB, GRIB2, geoTIFF, DBF, BIL, BIP, ARC, SDTS, SRTM, IMG, UA, LGW, SXW, ODS
 - Ad hoc formats:
 - Spreadsheets
 - Databases
 - Services
 - R Data
 - Matlab Data

- Document
- Image
- Spatial
- Tabular
- Weather
- 3D
- Archive, Database, Filesystem, …
What we need

A system/framework that

• Enables access to data contents irrespective of file formats
• Extracts metadata from data content and does automatic curation
• Uses existing conversion/extraction/data analysis tools
• Is extensible – easily add new tools
• Is dynamically scalable
• Is easy to use
CIF21 DIBBs: Brown Dog

- PI: Kenton McHenry, Ph.D.
- Co-PI: Jong Lee, Ph.D.
- Co-PI: Barbara Minsker, Ph.D.
- Co-PI: Praveen Kumar, Ph.D.
- Co-PI: Michael Dietze, Ph.D.
Brown Dog – A framework for autocuration

• Data Access Proxy (DAP)
 • File format conversions
 • Example – png to pdf

• Data Tilling Service (DTS)
 • Extraction of metadata, signatures or derived products from a file’s content
 • Example – Face extraction, text extraction using OCR, table from pdf, previews

• Tools Catalog (TC)
 • Allows to add new conversion/extraction tools to the DAP/DTS

• Elasticity Module (EM)
 • Scales Up/Down DAP/DTS
Data Access Proxy (Data format conversion)

- REST API
- Largely Reversible
- Software Servers
 - 3rd party software, library, external service
 - Wrapper Scripts (Converters)

#Application name (Version)
#File types supported (e.g. document, depth, image, …)
#Comma separated list of supported input formats
#Comma separated list of supported output formats

Adding Converters to Software Server within DAP
#!/bin/sh

#ImageMagick (v6.5.2)
#image
#bmp, dib, eps, fig, gif, ico, jpg, jpeg, jp2, pcd, pdf, pgm, pict, pix, png, pnm, ppm, ps, rgb, rgba, sgi, sun, svg, tga, tif, tiff, ttf, x, xbm, xcf, xpm, xwd, yuv
#bmp, dib, eps, gif, jpg, jpeg, jp2, pcd, pdf, pgm, pict, png, pnm, ppm, ps, rgb, rgba, sgi, sun, svg, tga, tif, tiff, ttf, x, xbm, xcf, xpm, xwd, yuv

output_filename=$(basename "$2")
output_format="${output_filename##*.}"

#Output PGM files as ASCII
if ["$output_format" = "pgm"]; then
 convert "$1" -compress none "$2"
else
 convert "$1" "$2"
fi
Data Tiling Service (Metadata Extraction)

- REST API
- Extractors
- Use any existing tool
- Python library - pyClowder

```python
extractors.connect_message_bus(extractorName=extractorName,
                               messageType=messageType,
                               rabbitmqURL=rabbitmqURL,
                               rabbitmqExchange=rabbitmqExchange,
                               processFileFunction=process_file,
                               checkMessageFunction=check_message)
```

```python
def process_file(parameters):
    global extractorName
    inputfile=parameters['inputfile']

    # call actual program
    result = subprocess.check_output(['wc', inputfile], stderr=subprocess.STDOUT)
    (lines, words, characters, filename) = result.split()
```

```python
extractors.upload_file_metadata(mdata=metadata,
                                parameters=parameters)
```

Creating a Python extractor using pyClowder for DTS
Example

```python
#!/usr/bin/env python
import subprocess
import logging
from config import *
import pymedici.extractors as extractors

def main():
    global extractorName, messageType, rabbitmqExchange, rabbitmqURL
    # set logging
    logging.basicConfig(format='%(levelname)-7s: %(name)s - %(message)s', level=logging.WARN)
    logging.getLogger('pymedici.extractors').setLevel(logging.INFO)
    # connect to rabbitmq
    extractors.connect_message_bus(extractorName=extractorName, messageType=messageType, processFileFunction=process_file
                                   rabbitmqExchange=rabbitmqExchange, rabbitmqURL=rabbitmqURL)

    # Process the file and upload the results
    def process_file(parameters):
        global extractorName

        inputFile = parameters['inputfile']

        # call actual program
        result = subprocess.check_output(['wc', inputFile], stderr=subprocess.STDOUT)
        (lines, words, characters, filename) = result.split()

        # store results as metadata
        metadata = {}
        metadata['extractor_id'] = extractorName
        metadata['lines'] = lines
        metadata['words'] = words
        metadata['characters'] = characters

        # upload metadata
        extractors.upload_file_metadata(mdata=metadata, parameters=parameters)

    if __name__ == '__main__':
        main()
```
The Brown Dog Services Architecture

Web Browser

Custom Clients

HTTP/HTTPS

Load balancer

Polyglot Steward

Polyglot Steward

Jobs (Mongo DB)

Software Server

Software Server

Data Access Proxy

Event Bus (RabbitMQ)

Extractor (Java/Python)

Data Tilling Service

Extractor (Java/Python)

Clowder WebApp (Scala/Play)

Clowder WebApp (Scala/Play)

Data/Metadata (MongoDB)

DAP DTS TC EM
Add A Version

Version

This field is required

Required

What's new in this version

This field is required

Required

Compatible with (e.g., "Medici 1.0")

Example input file URL

Example output (file URL or JSON)

Must create the version before submitting the accompanying file. Click "Edit" once created to add the new version of the file.
Elasticity

• Automatically scales up/down DAP/DTS based on the user demands
• Leverages cloud computing IaaS
• Supports a variety virtual machine/container frameworks
• Leverages HPC resources to batch execute jobs in long queues
• Focuses on DTS extractors and DAP Software Servers
Elasticity Module Architecture

- VM Image, Application Info
- Scaling Parameters
- Configuration File
- MongoDB
- Elasticity Module
- RabbitMQ Server
- Data Tiling Service / Data Access Proxy
- Cloud API
- SSH

Use API to list, create, suspend, resume VMs
Queue information: length, #consumers, idle time
Statistics actions
Clients

VM/ Docker 1
VM/ Docker 2
VM/ Docker n
OpenStack Cloud

DAP DTS TC EM
Elasticity – Performance Evaluation

- Tested with Open CV (Computer Vision) extractors
 - faces, eyes, profiles and closeups
- Tested with OCR extractor with around 1200 test images

Processing time is reduced by 70% and 80% if started with suspended VMs
Summary

- Huge diversity in data and analysis
- Programmable Interface – various client applications
- Automatically scales up/down
- Place to preserve/reuse software/tools
- Integrable with scientific workflow system
- Resuable modules
Brown Dog Services - Software Components, Cloud/HPC Resources

Clowder Polyglot RabbitMQ

Versus Daffodil mongoDB

openstack™ NCSA Nebula docker

Project website: http://browndog.ncsa.illinois.edu/
Thank You

Questions?

@NCSABrownDog