
 NEAL FORD software architect / meme wrangler

 ThoughtWorks®

 nford@thoughtworks.com
 3003 Summit Boulevard, Atlanta, GA 30319
 www.nealford.com
 www.thoughtworks.com
 blog: memeagora.blogspot.com
 twitter: neal4d

Agile Engineering
Practices

1

planning
vs
doing

Go for the one
that’ll beat the
one you last did

2

3

planning is stage one

most agile methodologies ignore
engineering

agility discipline

developers gone wild?!?

why does scrum
hate developers?

4

time & space

metrics

feedback
loops

automation

communication
non-

intuitivity

demonstration

5

which falls
faster?

6

TDD & velocity
[10 mins]

design practices
[15 mins]

agile estimation
[15 mins] Artifact repository

Source
code

Commit stage

Compile
Commit tests

Assemble
Code analysis

reports
binaries
metadata

Acceptance stage

Configure environment
Deploy binaries

Smoke test
Acceptance tests

Capacity stage

Configure environment
Deploy binaries

Smoke test
Run capacity tests

UAT

Configure environment
Deploy binaries

Smoke test

Env &
app

config

reports
metadatabinaries

Production

Configure environment
Deploy binaries

Smoke test

Env &
app

config

binaries
reports
metadata

Operations
perform

push-button
releases

Testers
Self-service
deploymentsDevelopers

See code metrics
and test failures

Version control

continuous delivery
[10 mins]

DVCS magic
[10 mins]

feature toggles
[10 mins]

why pair
programming works

[10 mins]

pair programming
mechanics [15 mins]

7

agile

estimation

Try playing the throw that would
have lost to your opponents last
throw.

8

iteration 0
(inception)

architecture QoS testing

what does it do? when?

9

developers gauge complexity

for each story {
BA/stakeholder describes what
it does

}

assign complexity points

estimation

10

complexity vs.
time

rookie

time = coding with no interruption
 16 hours a day, subsisting on

cold pizza & mountain dew

experienced
developer

time = 8 hrs - (#_meetings +
support_calls +

email + fixing_printers)

11

complexity

1
2

4
8

16

how complex is
this story compared
to other stories?

12

gets better over time

less ad-hoc variable values

more consistent across projects

builds trust

complexity

13

project manager
assigns load factor

to convert
complexity to time

14

business chooses
story order

15

project manager continuously gauges the
quality of estimates using actual data

quality of data quality of metrics

coarse grained estimate by developers is a
good starting place

if the estimates are poor re-estimate

if the load factor if wrong change it

estimation &
metrics

16

for
more

information
17

metrics enablers
18

business derived
completion criteria

feedback
loops

communication

19

20

21

business derived
completion criteria

22

metrics binary
completion

0 1.
23

project-level
metrics

metrics

24

Sparky’s
spreadsheet

25

26

27

28

29

the customer is
always available...

...or a worthwhile substitute

30

“feed” the development process

customer proxy

80% business, 20% technical

instant answer source

(local) subject matter experts

business analysts

31

requirements
gathering is a

lossy
compression
algorithm

32

moving window

development

iterations

BA story
pipeline

QA

bugs

33

design practices

Rock is for Rookies:
males have a
tendency to lead
with Rock on their
opening throw.

34

fear

boring

anticipatory design

irrational attachment

cleverness

why is simplicity hard?simplicity

mixed with

35

choose a system
metaphor

domain driven design’s
 ubiquitous language

36

anything but UML!

class-responsibility-collaboration cards

alternative to UML

deprecated by technology

captures just what you need

use crc cards for
design sessions

37

+
design tools

38

what about...

39

DRY

useful low
ritual

tests!succinct

documentation

40

create spike
 solutions to
reduce risk

not prototypes!
41

no functionality
added early

yagni
42

don’t build
frameworks

extract them
43

case study
44

evolution
 of

asynchronous
messaging

45

progress bars &
async upload

backgrounDrb
http://backgroundrb.rubyforge.org/

46

3 kinds

47

use backgroundrb for
simple message queue
backed by database

48

switch to a real
messaging queue

(Starling)

49

project time

don’t know what we don’t know

“buy the fanciest one we
can” (just in case)

50

project time

technical debt

when you
add it

when you
start using it

51

project time

don’t know what we don’t know

“buy the fanciest one we
can” (just in case)

pay $$$ for technical debt…

…that you may never justify

52

trying to predict the
future leads to over-

engineering
53

TDD,
Design,

&
Velocity

Scissors on First:
play scissors as your
opening move against a
more experienced player.

54

startstartstart

write a
failing
test

start

write a
failing
test

write
code to
make it
pass

start

write a
failing
test

write
code to
make it
pass

start

write a
failing
test

write
code to
make it
pass

refactor

start

write a
failing
test

write
code to
make it
pass

refactor

can't think

of any

more tests

start

write a
failing
test

write
code to
make it
pass

stop

refactor

can't think

of any

more tests

red green refactor

code the
unit test
first

55

atomic understanding of intent

more about design than testing

design will emerge from tests

less accidental complexity

better abstractions

test driven
design

56

perfect number
case study

∑ of the factors == number
(not including the number)

57

test-after, 1st pass

2

8

?

58

whole-number
square roots

59

60

61

########

##
#

#

#
#
#

?

62

test-after

TDD

63

case studies
Dr. Laurie Williams

Associate Professor
North Carolina State
University
Department of Computer
Science

http://
collaboration.csc.ncsu.
edu/laurie/
publications.html

64

source: http://agile-carolinas.pbworks.com/f/
WilliamsTDD.ppt

65

source: http://agile-carolinas.pbworks.com/f/WilliamsTDD.ppt

66

source: http://agile-carolinas.pbworks.com/f/WilliamsTDD.ppt

new “anti-aging” formula

67

writing more code
allows you to go

faster

68

pair programming
mechanics

Paper is the least
obvious of opening
moves.

69

2 monitors

2 keyboards

2 mice

1 computer

70

...and nothing else

not someone’s computer

all the tools for development...

mirrored...

pairing station ≠ your laptop

pairing stations

*

71

mirrored
workstations

radmind
http://rsug.itd.umich.edu/software/radmind/

automation

72

driver

73

navigator

74

design discussions in situ

driver types & narrates

navigator thinks & interjects

swap roles frequently

no discussion > 10 mins w/o code

logistics
narrates

75

tech lead picks effective pairs

twice a day ⇔ every other day

spreads knowledge across team

reduces truck number metric

pair rotation

76

context update for the new pair

1 person must stay with story

you can only stay once/rotation

promiscuous knowledge

today’s new pair is tomorrow’s
context keeper

swapswap

77

not!

78

2 people huddled over 1 computer

mentoring

 what it’s not!

79

learning

skill

ch
al

le
ng

e

flow

coaching

?
overwhelmed

bored

mentoring

80

keyboard domination

2 people huddled over 1 computer

mentoring

 what it’s not!

81

ping-pong
pairing

82

keyboard domination

2 people huddled over 1 computer

mentoring

less productive

> 10 mins of debate
 with no code

pair marriages

 what it’s not!

83

pair programming
studies

after adjusting, pairs produced code
15% more slowly than individuals...

84

pair programming
studies

...with 15% fewer defects
85

“error free” code 70-85%

pairs 15% slower

15% fewer bugs

testing & debugging many times more $
$$

50% decrease in errors (30%-15%)

Williams et al

http://www.economist.com/displayStory.cfm?Story_ID=779429

86

novice-novice vs. novice solos

Lui 2006

rigorous scientific experiment

Lui, Chan, & Nosek: pairs outperform
for design tasks

expert-expert vs. expert solo

more studies

vs.

http://www.cs.utexas.edu/users/mckinley/
305j/pair-hcs-2006.pdf

novice ∆ “significantly higher”

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4378344
87

benefits

88

promiscuous knowledge

what I
know

what u
know

what we know

89

design implications

domain knowledge

architectural understanding

effective tools

keyboard shortcuts

fungibility

90

playing w/
better players

91

why pair
programming works

92

93

94

left brain

right brain

95

left brain:

spoken language and writing
counting
rational thought and logic
analysis, recognition of details
governing and lawmaking
science
awareness of time
linear thought, "step by step"linear thought, "step by step"

96

left brain

right brain

97

right brain

body language
ability to visualize, daydreaming
intuition
synthesis, ability to synopsize
creativity, imagination
art, music, dance, color, rhythm
spacial awareness
holistic and non-linear thoughtholistic and non-linear thought

98

99

100

“in the zone”

total concentration

time disappears

insanely productive

tunnel vision

101

THE PSYCHOLOGY OF
OPTIMAL EXPERIENCE

102

Puma Productivity Pants™

103

104

105

106

107

cubicles make
you dumber!

108

109

110

coding
!=

dull

111

managers

makers

112

overtime is bad

113

feature
toggles

When playing with
someone who is not
experienced at the
RPS, look out for
double runs or, in

other words, the same
throw twice.

Thanks to my colleague Cosmin Stejerean for this topic

114

P1 P2

G2G1

B1

B1

B1

P1-2

G1-2

G3 G4

P4

B2

P5

G5 G6

B2

P3-4

G3

B2

P3

Professor Plum

Reverend Green

Mainline

115

P1 P2

G2G1

B1

B1

B1

P1-2

G1-2

G3 G4

P4

B2

P5

G5 G6

B2

P3-4

G3

B2

P3

Professor Plum

Reverend Green

Mainline

G1-6

P1-5

P1-5

G1-6

feature branch

116

P1 P2

G2G1

B1

B1

B1

P1-2

G1-2

G3 G4

P4

B2

P5

G5 G6

B2

P3-4

G3

B2

P3

Professor Plum

Reverend Green

Mainline

G1-6

P1-5

P1-5

G1-6

117

P1 P2

G2G1

B1

B1

B1

P1-2

G1-2

G3 G4

P4

B2

P5

G5 G6

B2

P3-4

G3

B2

P3

Professor Plum

Reverend Green

Mainline

G1-6

P1-5

P1-5

G1-6

merge
ambush!

copy/paste
reuse !!

118

merge

textual

semantic

requires
tests

119

pa
in

time between integrations

If it hurts...
... do it more often

bring
the pain
forward

feedback
loops

120

P1 P2

G2 G3G1 G4

P3 P4 P5

G5 G6

B1 B2

G1

G1

P1

P1
B1

P2

B1

P1-2

G2

G2

P3

G2

P3

B2

P4

B2

G3

P3
G3

G3

P4

P4 P5

P4-5

G4

G4 G5 G6

P2

Professor Plum

Reverend Green

Mainline

Continual Integration

121

P1 P2

G2 G3G1 G4

P3 P4 P5

G5 G6

B1 B2

G1

G1

P1

P1
B1

P2

B1

P1-2

G2

G2

P3

G2

P3

B2

P4

B2

G3

P3
G3

G3

P4

P4 P5

P4-5

G4

G4 G5 G6

P2

Professor Plum

Reverend Green

Mainline

P1 P2

G2G1

B1

B1

B1

P1-2

G1-2

G3 G4

P4

B2

P5

G5 G6

B2

P3-4

G3

B2

P3

Professor Plum

Reverend Green

Mainline

G1-6

P1-5

P1-5

G1-6

122

feature toggle

add configuration to your
application to enable/disable in-

flight features, allowing
development (and testing) on trunk

123

simple
turn it off in
 the user interface

turn it off in
 code

124

inheritance

125

composition

126

dependency
injection

127

annotations

128

129

130

include conditionally into dynamic
templates

leave static assets as static files

create feature-specific versions of
the static content

shopping_cart_foo.css

shopping_cart.css

separating static
assets

131

builds only what’s released

build-time toggles:

never leak details

more flexible testing

run-time toggles:

build vs runtime

long-lived feature toggles

132

remove feature toggles once feature
becomes official

exception: multiple versions

don’t featurize your application to
death

cleaning up

133

continuous
delivery

When playing against someone who asks you to remind them about the rules,
take the opportunity to subtly "suggest a throw" as you explain to them by

physically showing them the throw you want them to play.

134

continuous integration

deployment

delivery

integrate early &
often

deploy as the final
stage of CI

software is always
deployable

135

keep everything in version control

create a repeatable, reliable process
for releases

automate almost everything

“done” means “released”

if it hurts, do it more frequently

principles

136

deployment
pipelines

137

basic deployment
pipeline

Artifact repository

Source
code

Commit stage

Compile
Commit tests

Assemble
Code analysis

reports
binaries
metadata

Acceptance stage

Configure environment
Deploy binaries

Smoke test
Acceptance tests

Capacity stage

Configure environment
Deploy binaries

Smoke test
Run capacity tests

UAT

Configure environment
Deploy binaries

Smoke test

Env &
app

config

reports
metadatabinaries

Production

Configure environment
Deploy binaries

Smoke test

Env &
app

config

binaries
reports
metadata

Operations
perform

push-button
releases

Testers
Self-service
deploymentsDevelopers

See code metrics
and test failures

Version control

138

139

DVCS magic

140

central
repository

? ?

centralized VCS

141

central
repository

commit
diff

push

pull

DE-centralized VCS

142

git magic #1

143

run tests locally

finish feature

svn up

wait...

kick off checkin bash script

svn workflow

144

continuous
integration
server

svn server

1. pull from svn

2. run local tests
♫

♫
3.check in

10 min /
pair /
check-in

145

continuous
integration
server

git server

1. spawn local branch

3. run tests

4. check in OR stash

5. kill branch

2. pull from server

feedback
loops

146

α β

git magic #2

git server

147

git magic #2

α β

git server

1. undo disastrous checkout

2. save changes to local stash

3. create local
 branch
4. push stash to
 local branch

148

git magic #2

α β

git server

5. push local branch to
 remote branch

6. you broke it
— you fix it!

149

git magic #2

α β

git server

6. stash recent changes
7. checkout remote branch

8. fix it!
9. check into main

10. unstash & get back to work
150

transfer a merge
conflict to the
person better

qualified to fix it.

time & spaceautomation

non-

intuitivity

demonstration

151

why all the
rochambeau?

152

view builds

153

worst ...job ...ever

154

155

http://www.worldrps.com/
156

This work is licensed under the Creative
Commons Attribution-Share Alike 3.0
License.

http://creativecommons.org/licenses/by-sa/3.0/us/

?’s
please fill out the session evaluations

 NEAL FORD software architect / meme wrangler

 ThoughtWorks®

 nford@thoughtworks.com
 3003 Summit Boulevard, Atlanta, GA 30319
 www.nealford.com
 www.thoughtworks.com
 blog: memeagora.blogspot.com
 twitter: neal4d

157

resources
ThoughtWorks

Dr. Laurie Williams
http://collaboration.csc.ncsu.edu/
laurie/publications.html
git branching model
http://nvie.com/git-model

XProgramming.com - Ron Jeffries site
http://xprogramming.com/

Extreme Programming: A Gentle
Introduction
http://www.extremeprogramming.org/

158

•Maintain a Single Source Repository.
•Automate the Build
•Make Your Build Self-Testing
•Everyone Commits To the Mainline Every Day
•Every Commit Should Build the Mainline on
an Integration Machine

•Keep the Build Fast
•Test in a Clone of the Production
Environment

•Make it Easy for Anyone to Get the Latest
Executable

•Everyone can see what's happening
•Automate Deployment

http://martinfowler.com/articles/
continuousIntegration.html

159

