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Agile Engineering 
Practices
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planning 
vs
doing

Go for the one 
that’ll beat the 
one you last did
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planning is stage one

most agile methodologies ignore 
engineering

agility        discipline

developers gone wild?!?

why does scrum 
hate developers?
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time & space

metrics

feedback 
loops

automation

communication
non-

intuitivity

demonstration
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which falls 
faster?
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TDD & velocity
[10 mins]

design practices 
[15 mins]

agile estimation
[15 mins] Artifact repository

Source 
code

Commit stage

Compile
Commit tests

Assemble
Code analysis

reports
binaries
metadata

Acceptance stage

Configure environment
Deploy binaries

Smoke test
Acceptance tests

Capacity stage

Configure environment
Deploy binaries

Smoke test
Run capacity tests

UAT

Configure environment
Deploy binaries

Smoke test

Env & 
app  

config

reports
metadatabinaries

Production

Configure environment
Deploy binaries

Smoke test

Env & 
app 

config

binaries
reports
metadata

Operations
perform

push-button
releases

Testers
Self-service
deploymentsDevelopers

See code metrics
and test failures

Version control

continuous delivery
[10 mins]

DVCS magic
[10 mins]

feature toggles
[10 mins]

why pair 
programming works 

[10 mins]

pair programming 
mechanics [15 mins]
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agile 

                       
estimation

Try playing the throw that would 
have lost to your opponents last 
throw.
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iteration 0 
(inception)

architecture QoS testing

what does it do? when?
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developers gauge complexity

for each story {
BA/stakeholder describes what 
it does

}

assign complexity points

estimation
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complexity vs. 
time

rookie 

time = coding with no interruption
 16 hours a day, subsisting on 

cold pizza & mountain dew

experienced
developer

time = 8 hrs - (#_meetings + 
support_calls + 

email + fixing_printers)

11



complexity

1
2

4
8

16

how complex is
this story compared
to other stories? 
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gets better over time

less ad-hoc variable values

more consistent across projects

builds trust

complexity

13



project manager 
assigns load factor 

to convert 
complexity to time
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business chooses 
story order
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project manager continuously gauges the 
quality of estimates using actual data

quality of data           quality of metrics

coarse grained estimate by developers is a 
good starting place

if the estimates are poor         re-estimate

if the load factor if wrong       change it

estimation & 
metrics
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for 
more

information
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metrics enablers
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business derived 
completion criteria

feedback 
loops

communication
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business derived 
completion criteria
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metrics binary 
completion

0 1.
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project-level 
metrics

metrics
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Sparky’s 
spreadsheet
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the customer is 
always available...

...or a worthwhile substitute
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“feed” the development process

customer proxy

80% business, 20% technical

instant answer source

(local) subject matter experts

business analysts
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requirements
gathering is a

lossy 
compression 
algorithm
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moving window

development

iterations

BA story
pipeline

QA

bugs
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design practices

Rock is for Rookies: 
males have a 
tendency to lead 
with Rock on their 
opening throw.
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fear

boring

anticipatory design

irrational attachment

cleverness

why is simplicity hard?simplicity

mixed with
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choose a system 
metaphor 

domain driven design’s
 ubiquitous language
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anything but UML!

class-responsibility-collaboration cards

alternative to UML

deprecated by technology

captures just what you need

use crc cards for 
design sessions
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+
design tools
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what about...
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DRY

useful low 
ritual

tests!succinct

documentation
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create spike
 solutions to 
reduce risk

not prototypes!
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no functionality 
added early

yagni
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don’t build 
frameworks

extract them
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case study
44



evolution
 of

asynchronous  
messaging
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progress bars & 
async upload

backgrounDrb
http://backgroundrb.rubyforge.org/
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3 kinds

47



use backgroundrb for 
simple message queue 
backed by database
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switch to a real 
messaging queue 

(Starling)
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project time

don’t know what we don’t know

“buy the fanciest one we 
can” (just in case)
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project time

technical debt

when you
add it

when you
start using it
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project time

don’t know what we don’t know

“buy the fanciest one we 
can” (just in case)

pay $$$ for technical debt…

…that you may never justify
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trying to predict the 
future leads to over-

engineering
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TDD, 
Design, 

& 
Velocity

Scissors on First:
play scissors as your 
opening move against a 
more experienced player.
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startstartstart

write a 
failing 
test

start

write a 
failing 
test

write 
code to 
make it 
pass

start

write a 
failing 
test

write 
code to 
make it 
pass

start

write a 
failing 
test

write 
code to 
make it 
pass

refactor

start

write a 
failing 
test

write 
code to 
make it 
pass

refactor

can't think 

of any 

more tests

start

write a 
failing 
test

write 
code to 
make it 
pass

stop

refactor

can't think 

of any 

more tests

red green refactor

code the 
unit test 
first
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atomic understanding of intent

more about design than testing

design will emerge from tests

less accidental complexity

better abstractions

test driven 
design
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perfect number 
case study

∑ of the factors == number
(not including the number)
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test-after, 1st pass

2

8

?
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whole-number
square roots
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########

##
#

#

#
#
# #

?
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test-after

TDD
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case studies
Dr. Laurie Williams

Associate Professor
North Carolina State 
University 
Department of Computer 
Science

http://
collaboration.csc.ncsu.
edu/laurie/
publications.html 
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source: http://agile-carolinas.pbworks.com/f/
WilliamsTDD.ppt
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source: http://agile-carolinas.pbworks.com/f/WilliamsTDD.ppt
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source: http://agile-carolinas.pbworks.com/f/WilliamsTDD.ppt

new “anti-aging” formula
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writing more code 
allows you to go 

faster
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pair programming 
mechanics

Paper is the least 
obvious of opening 
moves.
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2 monitors

2 keyboards

2 mice

1 computer

70



...and nothing else

not someone’s computer

all the tools for development...

mirrored...

pairing station ≠ your laptop

pairing stations

*
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mirrored 
workstations

radmind
http://rsug.itd.umich.edu/software/radmind/

automation
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driver

73



navigator
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design discussions in situ

driver types & narrates

navigator thinks & interjects

swap roles frequently

no discussion > 10 mins w/o code

logistics
narrates
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tech lead picks effective pairs

twice a day ⇔ every other day

spreads knowledge across team

reduces truck number metric

pair rotation
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context update for the new pair

1 person must stay with story

you can only stay once/rotation

promiscuous knowledge 

today’s new pair is tomorrow’s 
context keeper

swapswap
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not!
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2 people huddled over 1 computer

mentoring

  what it’s     not!
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learning

skill

ch
al

le
ng

e

flow

coaching

?
overwhelmed

bored

mentoring
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keyboard domination

2 people huddled over 1 computer

mentoring

  what it’s     not!
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ping-pong 
pairing
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keyboard domination

2 people huddled over 1 computer

mentoring

less productive

> 10 mins of debate
  with no code

pair marriages

  what it’s     not!
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pair programming 
studies

after adjusting, pairs produced code 
15% more slowly than individuals...
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pair programming 
studies

...with 15% fewer defects
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“error free” code 70-85%

pairs 15% slower

15% fewer bugs

testing & debugging many times more $
$$

50% decrease in errors (30%-15%)

Williams et al

http://www.economist.com/displayStory.cfm?Story_ID=779429
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novice-novice vs. novice solos

Lui 2006

rigorous scientific experiment

Lui, Chan, & Nosek: pairs outperform 
for design tasks

expert-expert vs. expert solo

more studies

vs.

http://www.cs.utexas.edu/users/mckinley/
305j/pair-hcs-2006.pdf

novice ∆ “significantly higher”

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4378344
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benefits

88



promiscuous knowledge

what I 
know

what u 
know

what we know
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design implications

domain knowledge

architectural understanding

effective tools

keyboard shortcuts

fungibility
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playing w/ 
better players

91



why pair 
programming works

92
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left brain

right brain
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left brain:

spoken language and writing
counting
rational thought and logic
analysis, recognition of details
governing and lawmaking
science
awareness of time
linear thought, "step by step"linear thought, "step by step"
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left brain

right brain
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right brain

body language
ability to visualize, daydreaming
intuition
synthesis, ability to synopsize
creativity, imagination
art, music, dance, color, rhythm
spacial awareness 
holistic and non-linear thoughtholistic and non-linear thought
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“in the zone”

total concentration

time disappears

insanely productive

tunnel vision
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THE PSYCHOLOGY OF
OPTIMAL EXPERIENCE
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Puma Productivity Pants™
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cubicles make 
you dumber!
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coding 
!= 

dull

111



managers

makers
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overtime is bad
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feature
toggles

When playing with 
someone who is not 
experienced at the 
RPS, look out for 
double runs or, in 

other words, the same 
throw twice.

Thanks to my              colleague Cosmin Stejerean for this topic
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P1 P2

G2G1

B1

B1
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G1-6
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feature branch
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G2G1

B1

B1

B1

P1-2

G1-2

G3 G4

P4

B2

P5

G5 G6

B2

P3-4

G3

B2

P3

Professor Plum

Reverend Green

Mainline

G1-6

P1-5

P1-5

G1-6

117



P1 P2

G2G1

B1

B1

B1

P1-2

G1-2

G3 G4

P4

B2

P5

G5 G6
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Professor Plum
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G1-6

P1-5

P1-5

G1-6

merge
ambush!

copy/paste 
reuse !!
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merge

textual

semantic

requires 
tests
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pa
in

time between integrations

If it hurts...
... do it more often

bring 
the pain 
forward

feedback 
loops
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Continual Integration
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feature toggle

add configuration to your 
application to enable/disable in-

flight features, allowing 
development (and testing) on trunk

123



simple
turn it off in
 the user interface

turn it off in
 code
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inheritance

125



composition

126



dependency 
injection

127



annotations

128



129
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include conditionally into dynamic 
templates

leave static assets as static files

create feature-specific versions of 
the static content 

shopping_cart_foo.css

shopping_cart.css

separating static 
assets
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builds only what’s released

build-time toggles:

never leak details

more flexible testing

run-time toggles:

build vs runtime

long-lived feature toggles
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remove feature toggles once feature 
becomes official

exception: multiple versions

don’t featurize your application to 
death

cleaning up
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continuous 
delivery

When playing against someone who asks you to remind them about the rules, 
take the opportunity to subtly "suggest a throw" as you explain to them by 

physically showing them the throw you want them to play.
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continuous integration

deployment

delivery

integrate early & 
often

deploy as the final 
stage of CI

software is always 
deployable
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keep everything in version control

create a repeatable, reliable process 
for releases

automate almost everything

“done” means “released”

if it hurts, do it more frequently

principles
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deployment 
pipelines
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basic deployment 
pipeline

Artifact repository

Source 
code

Commit stage

Compile
Commit tests

Assemble
Code analysis

reports
binaries
metadata

Acceptance stage

Configure environment
Deploy binaries

Smoke test
Acceptance tests

Capacity stage

Configure environment
Deploy binaries

Smoke test
Run capacity tests

UAT

Configure environment
Deploy binaries

Smoke test

Env & 
app  

config

reports
metadatabinaries

Production

Configure environment
Deploy binaries

Smoke test

Env & 
app 

config

binaries
reports
metadata

Operations
perform

push-button
releases

Testers
Self-service
deploymentsDevelopers

See code metrics
and test failures

Version control
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DVCS magic
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central
repository

? ?

centralized VCS

141



central
repository

commit
diff

push

pull

DE-centralized VCS
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git magic #1
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run tests locally

finish feature

svn up

wait...

kick off checkin bash script

svn workflow
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continuous 
integration
server

svn server

1. pull from svn

2. run local tests
♫

♫
3.check in

10 min / 
pair / 
check-in
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continuous 
integration
server

git server

1. spawn local branch

3. run tests

4. check in OR stash

5. kill branch

2. pull from server

feedback 
loops
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α β

git magic #2

git server
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git magic #2

α β

git server

1. undo disastrous checkout

2. save changes to local stash

3. create local
   branch
4. push stash to 
   local branch
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git magic #2

α β

git server

5. push local branch to 
   remote branch

6. you broke it 
— you fix it!
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git magic #2

α β

git server

6. stash recent changes
7. checkout remote branch

8. fix it!
9. check into main

10. unstash & get back to work
150



transfer a merge 
conflict to the 
person better 

qualified to fix it.

time & spaceautomation

non-

intuitivity

demonstration
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why all the 
rochambeau?

152



view builds

153



worst                 ...job       ...ever
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http://www.worldrps.com/
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This work is licensed under the Creative 
Commons Attribution-Share Alike 3.0 
License. 

http://creativecommons.org/licenses/by-sa/3.0/us/
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resources
ThoughtWorks

Dr. Laurie Williams
http://collaboration.csc.ncsu.edu/
laurie/publications.html 
git branching model
http://nvie.com/git-model 

XProgramming.com - Ron Jeffries site
http://xprogramming.com/ 

Extreme Programming: A Gentle 
Introduction
http://www.extremeprogramming.org/ 
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•Maintain a Single Source Repository.
•Automate the Build
•Make Your Build Self-Testing
•Everyone Commits To the Mainline Every Day
•Every Commit Should Build the Mainline on 
an Integration Machine

•Keep the Build Fast
•Test in a Clone of the Production 
Environment

•Make it Easy for Anyone to Get the Latest 
Executable

•Everyone can see what's happening
•Automate Deployment

http://martinfowler.com/articles/
continuousIntegration.html
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