
Raffaele Montuoro

Department of
Atmospheric Sciences
Texas A&M University

Jump-starting the development of
coupled climate models with minimal
effort using a new communication
library

SEA Conference 2014
April 7-11, 2014 – Boulder, CO

Outline

¤  Why a new library? Overview of available tools for
building coupled models and practical challenges

¤  The Texas A&M Coupling Library (AMC):
Foundations & Introduction to the API

¤  Hands-on exercise: let’s build a coupled model!

Overview
Software tools available for building coupled models today

Available coupling software and tools

Major coupling frameworks:

CPL7 — NCAR model coupler, version 7 (Craig et al., 2012)
Included in the Community Climate System Model (CCSM4)
and in the Community Earth System Model (CESM1)

based on the Model Coupling Toolkit

OASIS — CERFACS/CNRS (France) coupler (Valcke et al., 2006)
Originally based on the Prism System Model Interface (PSMILe)

OASIS3-MCT released on May 28, 2013

FMS — NOAA GFDL Flexible Modeling System (Balaji, 2004)

Communication kernels: MPP modules, built on MPI/SHMEM/NUMA

ESMF — Earth System Model Framework (started in 2002)

Based on CCSM, FMS, , and more…

Available coupling software and tools

FOAM — custom coupler in Fast Ocean Atmosphere Model
ANL-UW, started 1994; development frozen in 2002 (version 1.5)

OpenPALM — robust coupler for multi-physics models (2011)

Supports industrial codes via TCP/IP connections

FLUME — FLexible Unified Model Environment (Ford & Riley,2002)

Built specifically for the UK Met Office Unified Model System

—Is a new coupling framework necessary?

Why a new coupling library?

— Are we going to reinvent the wheel?

http://tradingeducationblogs.com/day-trading-mistakes/

Motivation

¤  Available coupling tools are highly complex—their
manipulation requires expert software engineers

¤  Advances in science often require testing
unconventional hypotheses

¤  Academic research usually doesn’t involve teams of
expert software engineers

¤  Is it possible to create a model-coupling tool of minimal
complexity that can be quickly learned by researchers
with diverse backgrounds and interests?

The Texas A&M Coupling Library
(AMC)

Foundations and API

AMC: Foundations

AMC is a parallel coupling library conceived to enable data
exchange between individual programs (components) with
minimal coding

¤  AMC’s design is based on a distributed-memory model:
each parallel task is assumed to have access only to its
individual memory space

¤  Given its design, AMC’s implementation using the
Message Passing Interface (MPI) is straightforward

¤  AMC is written in standard Fortran 90

¤  Disclaimer: AMC is work in progress

AMC: Foundations

¤  AMC’s architecture relies on:

 A communication framework (driver/dispatcher)

 Coupled components

AMC

C1

C2 C3

¤  All communications between
components are routed through
a hub (framework)

¤  The hub is solely responsible for
handling all communications
(dispatch)

AMC: Foundations

In MPI language:

Framework
global communicator

AMC
tasks 0 1 2 3 4 5 6 7 8 9 10 11 12

comp.
tasks 0 1 2 3 4 0 1 0 1 2 3 4 5

local communicator
component 1

local communicator
component 3

local communicator
component 2

¤  Components do not overlap
¤  The order of components and components tasks can be chosen
¤  Identity of root task can be assigned in each component

AMC: Foundations

¤  Each AMC parallel task has a dual identity:

 It belongs to the framework

 It belongs to the component

¤  Task identities are fully handled internally
e.g.: local vs. remote memory access

¤  Public variables are provided to identify tasks:

Framework IDs may be accessed by all components

Component IDs are defined only inside the component

AMC: Initialization

The AMC library provides the following variables to identify
each parallel task:

	
integer :: &	
 amc_comm, &	! global comm	
 amc_root, 	 &	! root task	
 amc_rank, 	 &	! rank id	
 amc_size, 	 &	! total # tasks	
 amc_io_rank 	! id of I/O task	
	
logical :: &	
 amc_is_io,	 &	! is the I/O task? 	
 amc_is_root 	! is root task?	
	

Framework component

	
integer :: &	
 amc_cmp_comm, &	! Local comm	
 amc_cmp_root, &	! root task	
 amc_cmp_rank, &	! rank id	
 amc_cmp_size, &	! # cmp tasks	
 amc_cmp_io_rank ! id of I/O task	
	
logical :: 	 	 &	
 amc_cmp_is_io, & ! is I/O task? 	
 amc_cmp_is_root ! is root task?	
	

AMC: Syntax
Basic syntax rules:

amc_ 	 	symbols are used in framework

amc_cmp_ 	symbols are used in components

Names of functions and subroutines follow the rule:

Framework:

amc_<object>_<method>

Component:

amc_cmp_<object>_<method>

AMC: Initialization
A minimal set of calls is required to connect/disconnect a
model component to/from the framework

Reminder: All connections and communications are
handled by the framework (dispatcher)

use amc	
	
integer :: n1 	! N. tasks comp. 1	
integer :: n2 	! N. tasks comp. 2	
integer :: rc 	! Return code	
	
call amc_init(rc)	
	
call amc_frame_setup((/n1,n2/),rc)	

use amc	
	
integer :: root ! Rank of root	
integer :: comm ! communicator	
integer :: rc 	 ! Return code	
	
comm = amc_cmp_comm	
	
! Init component and connect	
! to framework (blocking)	
call amc_cmp_init(root,comm,rc)	

Framework component

handshake

call amc_frame_connect(req,rc)	
! connections are asynchronous	
call amc_req_complete(req)	

AMC: Communications
Communications (data exchanges) are carried out as:

info 	unstructured communications
 informational data exchanges, not necessarily
 related to each other

stream 	structured communications
 data exchanges follow known patterns

 Example: surface fluxes between ocean and

 atmosphere

AMC: Routing
Communications are always routed through the framework
(dispatcher) :

info 	unstructured communications may occur

 only between a single framework task (root)

 and a single component task (root)

stream 	structured communications occur

 between a single framework task (root)

 and all the tasks of a given component

 via the component’s root task

	

	

AMC: Routing
To summarize:

info 	unstructured communications

stream 	structured communications	

	

AMC cmp
one-to-one

AMC cmp

one-to-many

many-to-one

one-to-one

AMC: Streams

¤  Multiple streams can be opened for each component

¤  Each stream can be configured with its unique data
packing/unpacking method

¤  Each stream includes a regridding procedure based on
the SCRIP package (Jones, 1998). The regridder can be
configured, then turned on or off if needed.

¤  Multiple streams per component may be used to couple
multiple domains in nested models

AMC: Streams

¤  Streams need to be created in each component

¤  Streams must be connected to the frameworks to allow
communication with the component

¤  Stream connections are handled exclusively by the
framework

¤  All streams in a component are connected at once

¤  Each component’s stream is identified by a unique
integer id assigned at creation time

AMC: Streams
Example:

integer :: cmp_id, rc, req(:)	! N. tasks comp. 1	
	
cmp_id = 1 ! connect all streams from component 1	
	
call amc_stream_connect(cmp_id, req, rc)	
! connections are asynchronous	
call amc_req_complete(req)	

integer :: id, idx(:), n, rc	
	
n = 0	
do i = ibeg, iend 	! tile bounds (tiled domain)	
 n = n + 1	
 idx(n) = i 	 	! build address array	
end do	
	
id = 2 	 	! set the new stream id to 2	
call amc_cmp_stream_create(id, idx, n, rc)	

Fr
a

m
e

w
o

rk

c
o

m
p

o
n

e
n

t

AMC: Communicate
¤  Generic send/receive methods provided:

_get() 	retrieve method (remote to local)

_set() 	send method (local to remote)

¤  Call syntax may be “fully transparent”
—Symbols names are identical on both ends when buffers
declaration statements are included in a common module

—Buffers at end side are automatically allocated, if needed

¤  _info_ communications are asynchronous
They can be aggregated to improve performance

AMC: Receive info

use buffers	
integer :: cmp_id, rc, req(:)	
	
cmp_id = 1 ! receive data from component 1	
call amc_info_get(rbuflen, cmp_id, req, rc)	
call amc_req_complete(req) ! connections are asynchronous	
	
call amc_info_get(rbuf, rbuflen, cmp_id, req, rc)	
call amc_req_complete(req)	

use buffers	
	
allocate rbuf(rbuflen)	
	
rbuf(:) = localdata(:) 	! pack data into buffer	

Fr
a

m
e

w
o

rk

c
o

m
p

o
n

e
n

t

module buffers	
 integer :: rbuflen 	! Length of message buffer	
 real, dimension(:), pointer :: rbuf ! frame<-cmp 	
end module buffers	sh

a
re

d

m
o

d
u

le

AMC: Send info

use buffers	
integer :: cmp_id, rc, req(:)	
	
allocate sbuf(sbuflen)	
sbuf(:) = ...	
	
cmp_id = 2 ! send data to component 2	
call amc_info_set(sbuf, buflen, cmp_id, req, rc)	
call amc_req_complete(req) ! connections are asynchronous	

Fr
a

m
e

w
o

rk

c
o

m
p

o
n

e
n

t

module buffers	
 integer :: sbuflen 	! Length of message buffer	
 real, dimension(:), pointer :: sbuf ! frame->cmp 	
end module buffers	

sh
a

re
d

m

o
d

u
le

use buffers	
	
localdata(:) = sbuf(:) 	! Use received data	

AMC: Receive data stream

use buffers	
integer :: id, cmp_id, rc	
	
cmp_id = 1 	! receive data from component 1	
id = 2 	 	! receive data from stream 2 of component 1	
	
call amc_stream_get(id, rbuf_glob, rbuf_loc, cmp_id, rc)	

Fr
a

m
e

w
o

rk

c
o

m
p

o
n

e
n

t

module buffers	
 ! global & local receive buffers: cmp->frame	
 real, dimension(:), pointer :: rbuf_glob, rbuf_loc	
end module buffers	

sh
a

re
d

m

o
d

u
le

use buffers	
integer :: i, n	
	
n = 0	
do i = ibeg, iend 	! tile bounds (tiled domain)	
 n = n + 1	
 rbuf_loc(n) = localdata(i)	
end do	

AMC: Send data stream

use buffers	
integer :: id, cmp_id, rc	
	
cmp_id = 3 ! send data to component 3	
id = 1 	 	 ! send data to stream 1 of component 3	
sbuf_glob(:) = globaldata(:)	
	
call amc_stream_set(id, sbuf_glob, sbuf_loc, cmp_id, rc)	

Fr
a

m
e

w
o

rk

c
o

m
p

o
n

e
n

t

module buffers	
 ! global & local receive buffers	
 real, dimension(:), pointer :: sbuf_glob, sbuf_loc	
end module buffers	

sh
a

re
d

m

o
d

u
le

use buffers	
	
allocate rbuf_loc(iend-ibeg+1) ! allocate buffer on local tile	
	
rbuf_loc(:) = localdata(:) 	 ! load tiled data chunk	

AMC: Communications

NOTE: Since all communications are initiated by the

framework (dispatcher), strict synchronization is required

between components and framework

	
call amc_sync(rc)	
	
! exchange data (get/set)	
	
call amc_sync(rc)	
	

Fr
a

m
e

w
o

rk

AMC: Regridding capabilities

¤  A regridding procedure based on SCRIP (Jones, 1998) is
embedded in each _stream_	

¤  It can be referenced using the object name:
_stream_map_

¤  Regridding of a data stream can be setup and
activated/deactivated using the following methods:

_load() 	Loads regridding parameters (weights, grid data)

_switch() 	Turns regridding on/off

NOTE: _stream_map_ can only be used by root task in
framework	

AMC: Regridding capability

! load regridding data (SCRIP) to stream id in 	
! component cmp_id for frame->cmp regridding	
	
call amc_stream_map_load(id, wts, num_wts, num_lnk, &	

	 	 	 	 	 	 dst_add, dst_grd_size, 	 &	
	 	 	 	 	 	 src_add, src_grd_size, to = cmp_id)	

	
! activate regridding	
call amc_stream_map_switch(id, cmp_id, .true.)	

Fr
a

m
e

w
o

rk

Regrid data from framework to component	

! load regridding data (SCRIP) to stream id in 	
! component cmp_id for frame->cmp regridding	
	
call amc_stream_map_load(id, wts, num_wts, num_lnk, &	

	 	 	 	 	 	 dst_add, dst_grd_size, 	 &	
	 	 	 	 	 	 src_add, src_grd_size, from = cmp_id)	

	
! activate regridding	
call amc_stream_map_switch(id, cmp_id, .true.)	

Regrid data from component to framework	

Fr
a

m
e

w
o

rk

Hands-on exercise:
Let’s build a coupled model!

How to build a basic coupled model using AMC

Building a basic coupled model

Three parts:

1.  Model driver

2.  Component 1 (e.g. atmosphere)

3.  Component 2 (e.g. ocean)

Building a basic coupled model

program drv	
 integer :: rc	
	
 call drv_init(rc)	
 if (rc.eq.0) call drv_run(rc)	
 call drv_finalize(rc)	
	
end program drv	

Model driver subroutine drv_init(rc)	
 use amc	
 use buffers	
 integer :: n1, n2, rc, req(:)	
	
 call amc_init(rc)	
 call amc_frame_setup((/n1,n2/), rc)	
 	
 call amc_frame_connect(req,rc)	
 select case (amc_cmp_id)	
 case (1)	
 call atm_init(rc) 	
 case (2) 	
 call ocn_init(rc) 	
 end select	
 call amc_req_complete(req)	
	
 call amc_stream_connect(1, req, rc)	
 call amc_stream_connect(2, req, rc)	
 call amc_req_complete(req)	
end subroutine drv_init	

subroutine drv_finalize	
 use amc	
	
 call amc_finalize	
	
end subroutine drv_finalize	

Building a basic coupled model
subroutine drv_run(rc)	
 use amc	
 use buffers	
 	
 do	 	! main time loop	
 select case (amc_cmp_id)	
 case (1)	
 call atm_import(rc) 	
 call atm_run(rc) 	
 call atm_export(rc) 	
 case (2) 	
 call ocn_import(rc) 	
 call ocn_run(rc) 	
 call ocn_export(rc) 	
 end select	
 call amc_sync(rc)	
 call amc_stream_get(1, atm_buf_g, atm_buf, 1, rc)	
 call amc_stream_set(1, ocn_buf_g, ocn_buf, 2, rc)	
 call amc_sync(rc)	
 end do	
end subroutine drv_run	

Model
driver

Building a basic coupled model

subroutine atm_init(rc)	
 use amc	
 use buffers	
 integer :: comm, root, rc, req(:)	
 	
 comm = amc_cmp_comm	
 call amc_cmp_init(root, comm, rc)	
 	
 n = 0	
 do i = ibeg, iend		
 n = n + 1	
 idx(n) = i	
 end do	
	
 call amc_cmp_stream_create(1,idx,n,rc)	
end subroutine atm_init	

subroutine atm_import(rc)	
 use buffers	
 localdata(:) = recvbuf(:)	
end subroutine atm_import	

subroutine atm_run(rc)	
 ! run model	
end subroutine atm_run	

subroutine atm_export(rc)	
 use buffers	
 sendbuf(:) = localdata(:)	
end subroutine atm_export	

¤  Layout of a model component (atmosphere)

Future work

¤  Finalize first public release of AMC

¤  Parallelize regridding in streams

¤  Implement collective communications

¤  Build a state-of-the-art coupled regional climate model
for research

Questions?

Thank you! rmontuoro@tamu.edu	

