Serially Fast Python
HPC Python

Todd Evans
rtevans@tacc.utexas.edu

April 17, 2015
Table of contents

- NumPy
- IO
NumPy

Python Objects
- High-level number objects: integers, floating point
- Containers: lists, dictionaries

NumPy
- Extension package for multi-dimensional arrays
- Closer to hardware → efficiency
- Designed for scientific computation
NumPy and Python List

Python List

In [1]: import numpy as np
In [2]: list = range(100000)

In [3]: %timeit [i**2 for i in list]
100 loops, best of 3: 6.43 ms per loop

In [4]: array = np.arange(100000)

In [5]: %timeit array**2
1000 loops, best of 3: 97.7 us per loop
Why so Slow?

- Dynamic typing requires lots of metadata around variables
- Potentially inefficient memory access
- Interpreted instead of compiled

What can you do?

- Make an object that has a single type and continuous storage
- Implement common functionality into that object to iterate in C
NumPy Features

• A powerful N-dimensional array object
• Sophisticated (broadcasting) functions

```python
>>> a = np.array([1.0, 2.0, 3.0])
>>> b = np.array([2.0, 2.0, 2.0])
>>> a * b
array([ 2. , 4. , 6. ])
```

• Tools for integrating C/C++ and Fortran code
• Useful linear algebra, Fourier transform, and random number capabilities
Array Object

What makes an array so much faster?

- **Data layout**
 - homogenous: every item takes up the same size block of memory
 - single data-type objects
 - powerful array scalar types

- **universal function (ufuncs)**
 - function that operates on ndarrays in an element-by-element fashion
 - vectorized wrapper for a function
 - built-in functions are implemented in compiled C code
• Numpy: contiguous data buffer of values
• Python: contiguous buffer of pointers
ufuncs

- function that operates on ndarrays in an element-by-element fashion
- vectorized wrapper for a function
- built-in functions are implemented in compiled C code

Python function - ufunc

```python
In [1]: import numpy as np
In [2]: import math
In [3]: arr = np.arange(100000)
In [4]: %timeit [math.sin(i) for i in arr]
   10 loops, best of 3: 18.3 ms per loop
In [5]: %timeit np.sin(arr)
   100 loops, best of 3: 1.77 ms per loop
In [6]: %timeit [math.sin(i)**2 for i in arr]
   10 loops, best of 3: 27.3 ms per loop
In [7]: %timeit np.sin(arr)**2
   100 loops, best of 3: 1.83 ms per loop
```

Mathematical functions
How to Create an Array

import numpy as np
a = np.array([2, 3, 12]) # Create from list
a = np.arange(10) # 0, 1, 2, 3, 4,..., 9
b = np.arange(0, 10, 2) # start, end (exclusive), step. 0, 2, 4, 6, 8
a = np.linspace(0, 1, 5) #0, 0.25, 0.50, 0.75, 1.0
a = np.linspace(0, 1, 5, endpoint=False) #0, 0.2, 0.4, 0.6, 0.8

Useful arrays
a = np.ones((4,4))
a = np.zeros((3,3))
a = np.diag(np.ones(3))
a = np.eye(3)

with random numbers
np.random.seed(1111) # sets the random seed
a = np.random.rand(4) #uniform in [0,1]
b = np.random.randn(4) #Gaussian

uninitialized
a = np.empty((3,3))

resize
a = np.zeros(10)
a = np.resize(a, 20)
Data Types

<table>
<thead>
<tr>
<th>bool</th>
<th>string</th>
<th>int</th>
<th>float</th>
<th>complex</th>
</tr>
</thead>
<tbody>
<tr>
<td>int8</td>
<td>int16</td>
<td>int32</td>
<td>float16</td>
<td>complex64</td>
</tr>
<tr>
<td>int64</td>
<td>uint8</td>
<td>uint16</td>
<td>float32</td>
<td>complex128</td>
</tr>
<tr>
<td>uint32</td>
<td>uint64</td>
<td></td>
<td>float64</td>
<td></td>
</tr>
</tbody>
</table>
Data Types

Basic

In [1]: import numpy as np
In [2]: a = np.array([1, 2, 3])
In [3]: a.dtype
Out[3]: dtype('int64')
In [4]: b = np.array([1., 2., 3.])
In [5]: b.dtype
Out[5]: dtype('float64')

Other

In [6]: c = np.array([1, 2, 3], dtype=float)
In [7]: c.dtype
Out[7]: dtype('float64')
In [8]: d = np.array([True, False, True])
In [9]: d.dtype
Out[9]: dtype('bool')
In [10]: e = np.array([1+2j, 3+4j, 5+6j])
In [11]: e.dtype
Out[11]: dtype('complex128')
In [12]: f = np.array(['Bonjour', 'Hello', 'Hola'])
In [13]: f.dtype
Out[13]: dtype('S7') # Strings of max. 7 characters
Linear Algebra

Linear Algebra dot Function

In [1]: import numpy as np

In [2]: np.dot(np.arange(3), np.arange(3))
Out[2]: 5

In [3]: np.dot(np.arange(9).reshape(3,3), np.arange(3))
Out[3]: array([[5, 14, 23]])

In [4]: np.arange(9).reshape(3,3)
Out[4]:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])
Automatic Offload (AO)

• Feature of Intel Math Kernel Library (MKL)\(^1\)
 – growing list of computationally intensive functions
 – xGEMM and variants; also LU, QR, Cholesky
 – kicks in at appropriate size thresholds (e.g. SGEMM: \((M,N,K) = (2048, 2048, 256)\))
 – Functions with AO

• Essentially no programmer action required
 – more than offload: work division across host and MIC
 – Tips for using MKL on Phi

\(^1\)For more information refer to https://www.tacc.utexas.edu/resources/software/ao
Automatic Offload

Set at least three environment variables before launching your code:

- `export MKL_MIC_ENABLE=1`
- `export OMP_NUM_THREADS=16`
- `export MIC_OMP_NUM_THREADS=240`

- Other environment variables provide additional fine-grained control over host-MIC work division
- MKL documentation
- Intel MKL Automatic Offload enabled functions
Automatic Offload

examples/3_offload/my_dgemm.py

<table>
<thead>
<tr>
<th>Important Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMP_NUM_THREADS (1..16)</td>
</tr>
<tr>
<td>MKL_MIC_ENABLE (0, 1)</td>
</tr>
<tr>
<td>MIC_OMP_NUM_THREADS (1..240)</td>
</tr>
<tr>
<td>OFFLOAD_REPORT (0..2)</td>
</tr>
</tbody>
</table>
Data IO (broad categories)

- ascii
 - Simple structure
 - Human-readable
 - Maximum portability
 - Inefficient use of space
 - Examples: .csv, .txt, .dat, ...

- database
 - Complex (relational?) structure
 - Need special tools for write/read
 - Often have large computational/storage overheads
 - Examples: .xml, .db, .json, ...

- binary
 - Custom structure
 - Need special tools (+headers/information!) for write/read
 - Minimal computational/storage overheads
 - Examples: .bin, ...
Read/Write ascii

- Pure python
- Ascii data tools in numpy
- Binary tools in numpy

```python
import numpy as np
import random as r

def data_creation(number_of_lines, array_length):
    data = []
    for k in range(number_of_lines):
        d = []
        for i in range(array_length):
            a = r.randint(1, 10)
            d.append(a)
        data.append(d)
    return data

if __name__ == '__main__':
    number_of_lines = 6
    array_length = 4
    np_data = data_creation(number_of_lines, array_length)
```
Write ascii with numpy

- `numpy.savetxt()` makes it extremely easy to save tabular data

```
import numpy as np
import random as r
from data_creation import data_creation

number_of_lines = 100000
array_length = 4
np_data = data_creation(number_of_lines, array_length)
np.savetxt("ascii_data_example.dat", np_data)
```

some file properties

```
In [1]: head -n 3 ascii_data_example.dat
4.000000000000000000 e +00 2.000000000000000000 e +00 7.000000000000000000 e +00
  3.000000000000000000 e +00
8.000000000000000000 e +00 1.000000000000000000 e +01 3.000000000000000000 e +00
  4.000000000000000000 e +00
...

In[2]: ls -lh ascii_data_example.dat
-rw-r--r--  1 alamas  staff  9.5M Apr  1 13:19 ascii_data_example.dat
```
Read ascii with numpy

- `numpy.loadtxt()` is the converse of `savetxt()`

```python
import numpy as np
np_data = np.loadtxt("ascii_data_example.dat")
```

```python
some data properties

In[1]: import file_reading_loadtxt as fr
In[2]: np_data = fr.np_data
In[3]: type(np_data)
Out[3]: numpy.ndarray
In[4]: np_data.shape
Out[4]: (100000, 4)
```
Write binary with numpy

- `np.save(f, np_data)` saves a numpy array in a numpy binary format

```python
import numpy as np
import random as r
from data_creation import data_creation

number_of_lines = 100000
array_length = 4
np_data = data_creation(number_of_lines, array_length)
np.save("bin_data_example", np_data)
print(type(np_data))
```

Some file properties

```
In[1]: head bin_data_example.npy
?NUMPYF{’descr’: ’<i8’, ’fortran_order’: False, ’shape’: (100000, 4), }

In[2]: ls -lh bin_data_example.npy
-rw-r--r--  1 alamas staff 3.1M Apr 1 14:26 bin_data_example.npy
```
Read binary with numpy

- `np.load(f)` is the converse of `np.save()`

```python
import numpy as np

np_data = np.loadtxt("ascii_data_example.dat")
```

dsome data properties

```python
In[1]: import file_reading_load as fr

In[2]: np_data = fr.npy_data

In[3]: type(np_data)
Out[3]: numpy.ndarray

In[4]: np_data.shape
Out[4]: (100000, 4)
```
Why bother with binary?

Almost identical effort to deal with ascii or binary . . . so why do it?

- Storage space
- Speed
- Load on file system

Let’s have a closer look . . .
In[1] ./profiling_numpy_data.py
Generating data ...
Storing as a text file ...
1000174 function calls in 4.690 seconds
(...)

Storing as a numpy binary with headers ...
334 function calls in 0.050 seconds
(...)

Reading a txt file via numpy
10000264 function calls (9000264 primitive calls) in 7.178 seconds
(...)

Reading a numpy binary without headers ...
7831 function calls (5441 primitive calls) in 0.028 seconds
(...)

Profiling ascii vs binary
ascii vs binary

- The binary version is x100 faster!
- Ascii access requires x1000 more primitive calls!
- About x3 space savings

- Lots of python codes spend significant time in IO
- Reserve ascii IO for initial inputs and final outputs
- Keep intermediate results in efficient formats
- Use profiling tools not only for “pure computation”
© The University of Texas at Austin, 2015

This work is licensed under the Creative Commons Attribution Non-Commercial 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/

When attributing this work, please use the following text: ”HPC Python”, Texas Advanced Computing Center, 2015. Available under a Creative Commons Attribution Non-Commercial 3.0 Unported License.