Introduction
HPC Python

Antonio Gómez-Iglesias
agomez@tacc.utexas.edu

April 17, 2015
Why Python

- Easy!
- Fast development
- Nice, readable code
- Great for prototyping
- Many third party libraries
- Data analysis
- Many users!
Data Types

Dynamic language, but also a strongly typed language

- Objects have a type, which is determined at runtime
- A variable is a value bound to a name: the value has a type, but the variable doesn’t
- The interpreter keeps track of all variable types
- You can’t do anything that’s incompatible with the type of data you’re working with:
 - You can do ‘string+string’ and it will concatenate the strings
 - You can do ‘integer+integer’
 - You can’t do ‘string+integer’
Data Structures

Python List

- Dynamic arrays
- Indexed structure
- Items: Python objects
- Items of different types
- Insertion and deletion at random positions
Dictionary

- Associative arrays (key - value pairs)
- Indexed by key (string or number)
- Key: unique
- Value: any Python object
- Main operation: store a value with some key and extract the value given the key
• You’ll hear that Python is slow
 – Is it Python or your code?
 – Remember: Python is easy → bad programming
• If it’s slow, why should you use it?
• If you already have a Python code, what should you do?
Python in Stampede

- python/2.7.3-epd-7.3.2 (deprecated)
- python/2.7.6
- python/2.7.9

You can install your own modules

1. python setup.py install --user
2. python setup.py install --home=<dir>
3. pip install --user module_name

- You can use virtualenv
Before We Begin

Connect to Stampede

```
ssh -Y trainXXX@stampede.tacc.utexas.edu
```

Python Exercises

```
cp ~train00/python-hpc.tar.gz .
tar -xzf python-hpc.tar.gz
module load intel/14.0.1.106
module load python/2.7.6
idev -t 2:00:00
```
Profiling

```
python -m cProfile [-o output_file] [-s sort_order] script.py
```

```
examples/1_intro/test_prof1.py

1 import math
2 def function(arg):
3     res = []
4     for i in range(-10000000, 10000000):
5         res.append(math.sqrt(abs(i+1)*arg**5))
6     return res
7
8 print sum(function(10.0))
```

```
1.33333333332e+13

60000004 function calls in 17.351 seconds

Ordered by: standard name

ncalls  tottime  percall  cumtime  percall
1  0.141  0.141   17.351  17.351 test_prof1.py:1
1 12.835 12.835  17.039  17.039 test_prof1.py:2
20000000  1.312  0.000  1.312  0.000 {abs}
20000000  1.429  0.000  1.429  0.000 {math.sqrt}
20000000  1.463  0.000  1.463  0.000 {'append'}
1  0.000  0.000  0.000  0.000 {'disable'}
1  0.171  0.171  0.171  0.171 {sum}
```
Profiling

line profiler

- Installation

  ```bash
  pip install line_profiler --user
  export PATH=$PATH:$HOME/.local/bin
  ```

- Add `@profile` decorators to the functions you want to profile

examples/1_intro/test_prof1b.py

```python
from builtins import profile
import math

@profile
def function(arg):
    res = []
    for i in range(-10000000, 10000000):
        res.append(math.sqrt(abs(i+1)*arg**5))
    return res

print sum(function(10.0))
```

Run it

```
kernprof -l -v test_prof1b.py
```
import math

@profile
def function(arg):
 res = []
 factor = arg ** 5
 for i in xrange(-10000000, 10000000):
 if i < 0:
 res.append(math.sqrt((-i + 1) * factor))
 else:
 res.append(math.sqrt((i + 1) * factor))
 return res

print sum(function(10.0))
Profiling

```python
from builtins import profile
import math
@profile
def function(arg):
    factor = arg**5
    res = range(-10000000, 10000000)
    res = map(abs, res)
    res = [(x+1)*factor for x in res]
    res = map(math.sqrt, res)
    return res

print sum(function(10.0))
```

Run it:
kernprof -l -v test_prof3.py

A. Gómez

13

Introduction
© The University of Texas at Austin, 2015

This work is licensed under the Creative Commons Attribution Non-Commercial 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/

When attributing this work, please use the following text: ”HPC Python”, Texas Advanced Computing Center, 2015. Available under a Creative Commons Attribution Non-Commercial 3.0 Unported License.