Lidar Radar Open Software Environment

LROSE

and

the Python ARM Radar Toolkit
Py-ART
Joe VanAndel and Mike Dixon

Earth Observing Laboratory (EOL)
National Center for Atmospheric Research (NCAR)

Scott Collis and Jonathan Helmus
Environmental Sciences Division (EVYS)
Argonne National Laboratory

w;“':" “-,t U.S. DEPARTMENT OF
~Y; ENERGY

et

{EA RTF?
" isamel
v ¥

Radar 101: What does the data look like?

RAdio Detection And Rangin

Radars are a type of remote sensor,
put simply they emit a discrete pulse of
radiation and gate the receiver in order
spatially “range” returns.

Scanning radars also move the antenna
(dish) in elevation and azimuth in order
to scan out a volume of space. So each
ray data has an associated azimuth
and elevation and each gate within the
ray has an associated range.

Wide range of binary formats available.

Until recently difficult to read without
(some times commercial) software.
Evolving community standards.

:::::

Lidar 101: What does the data look like?

LIght Detection And Ranging

Lidars are a type of remote sensor, put
simply they emit a discrete pulse of
radiation and gate the receiver in order
spatially “range” returns.

Scanning lidars also move the beam in
elevation and azimuth in order to scan
out a volume of space. So each ray
data has an associated azimuth and
elevation and each gate within the ray
has an associated range.

Wide range of binary formats available.
Until recently difficult to read without
(some times commercial) software.
Evolving community standards.

HSRL & HCR

RTH

,U

Radar Software Challenge

Large Variety of Instruments

Different Platforms — Airborne, Mobile,
Fixed

Many different analysis/display tools

Users want to use C++, Java, Fortran,
Matlab, IDL, Numeric Python

[Lack of standardization of data formats.

Radar Software Challenge(2)

» Large code base, including aging legacy
applications

* Scientific Community has needs not
supported by current software

 Inherited data formats that are not optimal
for scientific data exchange.

The open source community software
paradigm

Open source is exactly what is says,
the source 1s open.. This is apart
from “freeware”, open source goes
further.. The source 1s open
although there are various clauses
on the use of the source and
developers need to be aware of the
differences and cross compatibility
between various licenses..

Community software goes even one
step further.. By using various social
coding platforms community
projects can grow to large multi-
contributor platforms.

github

SOCIAL CODING

Open Sourc

Numerical python: A model open source
community

Numerical Python, or Numpy, is a
poster child for a community open
source project.

Originally conceived by Travis
Oliphant it has progressed FAR
beyond it initial concept...

It has spawned companies,
consultancies and organizations
including iPython which has
recently received funding from the
Sloan foundation.

As a group the atmospheric science
must adopt a community project like
this...

@ Watch -~ % Star 780 ¥ Fork 290

Pull Requests 62 Issues 774 Wiki Graphs

62 open requests

Open Closed v Submitted Updated Popularity Long-running

get_shared_lib_extension(): strip debug extension from so ext
closes #3057 needs testing on macos and windows, | have no idea what DEBUG_EXT returns there

juliantaylor submitted to numpy/numpy 2 days ago 8 comments
2to3 apply import fixer
The new import “absolute_import™ is added the "“from __ future__ import™ statement and The 2to3
Tim.

charris submitted to numpy/numpy 3 days ago

0 comments

BUG: Adapt flexible dtype similarly from array or object
This is a fix for #3159. I've updated one test to account for these changes.

ewmoore submitted to numpy/numpy 5 days ago
[e sub Y) ays ag 4 comments

Updated documentation for histogram2d() in twodim_base.py
Updated histogram2d example according to http://www.scipy.org/Cookbook/Histograms for variable bi...

fkbreitl submitted to numpy/numpy 5 days ago 0 comments

Some fixes for bug in v1.7.0
Fixes a couple of bugs and adds support for detecting and using openblas instead of Atlas in _dot...

akesandgren submitted to numpy/numpy 9 days ago 16 comments

<.

{EART
i
w

Ty
W Moments
instruments

4 External platforms and instrumentation
Time series

instruments

Surface obs
Soundings
Lightning
Aircraft
etc.

‘ Models ‘ ‘ Satellites ‘

Y

File Archive

a5 0, 2, o
R,

#. algorithms &

e

algorithms

s

Cartesian
transformation

Calibration
Products

Web-enabled
data servers

Displays

solo3
PySolo

IN PROGRESS FUTURE

LROSE

CfRadial Data Exchange Format

Radx C++ Libraries to read/write open file
standards

Algorithms & Analysis tools
Core applications

Display Tools — Visualization & Editing

CfRadial

NetCDF using Climate and Forecasting
conventions (CF)

Readable by Linux, Windows, OS X.

Readable from Radx C++ library, Matlab,
IDL, Numeric Python

Readable by weather models.

Radx library

Format What/Who Read Write
Access Access
CfRadial NCAR/EOL/UNIDATA Yes Yes
DORADE NCAR/EOL Yes Yes
UF Universal Format Yes Yes
Foray-1 NCAR/EOL (Legacy) Yes Yes
DOE ARM netcdf Precedes CfRadial Yes No
NEXRAD msg32 Level 2 Archive Yes Yes
NEXRAD msgl Level 2 Archive Yes No
SIGMET —raw Vaisala (Sigmet) Yes No
format
RAPIC BOM Australia Yes No
LEOSPHERE ASCII format Yes No
LIDAR

S
£ EART

PR

Displays

Solo3 — C++

Jazz — Java

CIDD - C++
VCHILL - Java

IDV — Java
ProfilerDisplay — IDL

Displays(2)

e Xprof — IDL
e Emerald — Matlab
* PySolo - Python

The Python-ARM Radar Toolkit: Py-ART

« ARM DoE has funded Argonne
to produce a suite of radar
products from the ARM network
of X and C band radars.

 DOoE also funds PIs to do science
with the radar output.

 Py-ART was born out of the
desire for a open flexible
architecture to allow easy data

access and to empower Pls to
contribute.

ARM

CLIMATE RESEARCH FACILITY

Py-ART and the
Py-Radar object

So how best to represent the data at radar
gates and associated metadata®?

Also need to align the object to a
community standard format for easy
mapping.

NASA use a hierarchical memory object
(volume -> sweeps -> rays) very flexible but
poorly suited to array based operations.

The Py-Radar object uses dictionaries for
moments and metdata. Closely mirrors the
CF-Radial format.

All radial based methods in Py-ART (Python
ARM Radar Toolkit) work on Py-Radar
objects.

KISS Example, in the iPython Notebook.

In [2]: import netCDF4
basedir="'/Users/scollis/local_modules/'
import sys
sys.path.append(basedir)
from pyart.io import radar
from pylab import *

rsl library found /Users/scollis/local modules/pyart/io/lib/librsl.dylib

In [3]: netcdf object=netCDF4.Dataset('/data/sgpcsaprsurcmacI7.c0.20110520.095801.nc")
myradar=radar.Radar (netcdf object)

In [4]: print myradar.fields.keys()
[u'corrected_reflectivity horizontal', u'reflectivity horizontal', u'recalculated diff phase', u'specific_attenuation’,
u'unf_dp phase shift', u'mean doppler_velocity', u'diff phase', u'norm coherent power', u'dp phase_shift',
u'doppler spectral width', u'diff reflectivity', u'proc_dp phase shift', u'copol coeff']

In [5]: print myradar.fields['corrected reflectivity horizontal']['data'].shape

(6120, 983)

In [12]:

Out[l2]:

KISS Example, in the iPython Notebook.

figure(figsize=[15,5])
pcolormesh(myradar.time['data’], myradar.range['data’'],
myradar.fields['corrected reflectivity horizontal']['data'].transpose(),
vmin=-10, vmax=64)
xlabel (myradar.time['standard name']+ ('+myradar.time['units’']+"')")
ylabel (myradar.range['standard name']+' ('+myradar.range['units']+')")
colorbar()

<matplotlib.colorbar.Colorbar instance at 0x10a5f07a0>

120000

100000

80000 f

60000

40000 §

projection_range coordinate {meters)

time (seconds since 2011-05-20 09:58:01.0)

e

EARTF
OB

In [17]:

Out[17]:

figure(figsize=[15,5])
sweep_ num=1
il=myradar.sweep info['sweep start ray index']['data'][sweep num]
i2=myradar.sweep info['sweep end ray index']['data'][sweep num]
pcolormesh(myradar.time[‘data’][il1:12], myradar.range['data’],
myradar.fields['corrected reflectivity horizontal']['data'][il:1i2,:].transpose(),
vmin=-10, vmax=64)
xlabel (myradar.time['standard name']+ ('+myradar.time['units']+"')")
ylabel(myradar.range['standard name']+' ('+myradar.range['units']+')")
colorbar()

<matplotlib.colorbar.Colorbar instance at 0x10cce2950>

120000 64
56

= 100000}

@ 48

f'-j

E

¥ 80000} 140

m

- 2

£ |

o

S 60000}

' 424

o

s

i

c' 40000} 16

S

o, 8

g

S 20000} o
-8

%

time (seconds since 2011-05-20 09:58:01.0)

In [27]: rg,azg=meshgrid(myradar.range['data’'],myradar.azimuth['data’])
rg,eleg=meshgrid(myradar.range['data’],myradar.elevation['data’])
X,yY,2=radar_ coords_ to cart(rg,azg, eleg) #appending carts
figure(figsize=[7,4])
sweep num=1
il=myradar.sweep_info['sweep start ray index']['data'][sweep_num]
i2=myradar.sweep info['sweep end ray index']['data'][sweep num]
pcolormesh(x[il:i2,:]/1000.0, y[il:i2,:]/1000.0,

myradar.fields['corrected reflectivity horizontal']['data'][il:i2,:], vmin=-10, vmax=64)
xlabel('x (km)'); ylabel('y (km)') ; colorbar()

Out[27]: <matplotlib.colorbar.Colorbar instance at
0x11b36£f7a0>
150 64
56
100 1
48
50 | R 140
- 132
£ o
= {24
—50 } | 116
8
=100 a 0
-150, : ' ‘ * * S
-150 -100 =50 0 50 100 150

.
EARTH

Ol

Y =

In [48]:

In [52]:

H, xedges, yedges

np.histogram2d(z[:,0:-10].flatten()/1000.0,

myradar.fields['corrected reflectivity horizontal']['data'][:,0:-10].flatten(),

bins=(35, 50), range=([0,17],

figure(figsize=[8,5])
pcolormesh(yedges, xedges, H)

xlabel('Reflectivity (dBz)'); ylabel('height (m)');cb=colorbar()

cb.set label('ngates’')

[-6,64]))

18

16

14

12

10

height (m)

[B .

0

10

20 30 40
Reflectivity (dBz)

70

16000

14000

12000

10000

o |

27N
{EART
Sy
w

Abstract the interface, use the power of
extensibility to improve performance

e The Py-Radar object gives a standard
object to work on, if you build code
around this object allows the building of
interoperable modules.

Y distance from radar (km)
Radial velocity (m/s) positive outgoing

e But there is lots of legacy code that works
on other objects and in other languages.

30 -20 -10

e In addition optimization may require X dstance from radar k)
building extensions in C, C++ and Fortran.

e This does not matter, data can be taken
from the Py-Radar object, transcribed,
external module called and the data is
then filed back in the radar object.

e Py-ART dealias module transcribes into a
RSL container.

from radar (km)

-16

Radial velocity (m/s) positive outgoing

|
N
ES

23 _,:?"-f‘;
EART
OB
w

Xsapr-sg recalculated ditt phase 0.4 deg 201105200642

&%

Current module list .

114

112

Dealias

40

30

=
o
specific differential phase hv (degrees/km)

X distance from radar (km)

18
20 16 cgm
T 1 s 2 xsapr-sq rain rate A 0.4 deg 201105200642 150
g ‘ ' ' ' ' 4
£ . o) o |
g 2 1135 /
KIDP Estimatigih g
&8 -10 -8 O
£ § 1120 _30 0
7 20 168 -30 -20 -10 0 10 20 30
& 1105 East West distance fromOrigin (km)
-30 24
1 %0
—40 0 -0 0 10 20 0 u tl Opp er

~
w
rainfall rate (mm/hr)

45
30xsapr—sg specific attenuation 0.4 deg 201105200642 30 0
15
27
0
24 East West distance fromOrigin (km)
5 GLPK based ph
g ased phase processmg
1=
| "% 00— e File phldp N
15 g — Unf phidp ;“ “", {10
112 = ~ 250f| — KDP [
o £ |[— 200 [A ls 5
S g \ g
o = 200 g
o o 09 a e g
SUMALION | 1 : ;
] 150 E
- o
03 £ 3
& 100 a
00 £ =

-30 -20 -10 0 10 20 30
East West distance fromOrigin (km)

Range (km)

Generalized abstract radar mapping
interface

What we want is an object (in our favorite
environment) to take one cloud of points
and use objective analysis to map to
another cloud of points.

Eg:
— myobject=map((x,y,z), data)

— Mymappeddata=myobject((xn,yn,zn))
This could, for example map from a sector
of RHI scans to an aircraft track, nested PPIs
to a volume, or even multiple data sources
(of the same observable) to a single grid.

We have implemented* this in Python using
a ball tree.

*implemented=prototype?
aprotoype=slow*

Figure 1. A) A set of balls in the plane. B) A binary tree over these balls. C) The balls in

‘slow=to be optimized soon!

o > 4
b gt
N

Generalized abstract radar mapping
interface

SE XSAPR SW XSAPR

Z displacement from the CF (km)
(=)

-40 =20 0 20 40 -40 =20 0 20
N/S displacement from the CF (km) N/S displacement from the CF (km)

ALL XSAPR

A

r
1:—

A AN

&

w
N
Corrected refl fac (dBz)

5

"

(=
o

"_

-40 =20 0 20 40
N/S displacement from the CF (km)

Generalized abstract radar mapping
interface

SE XSAPR
— 16 ‘ 4 : :
E
= 14}
w
S 12t
<
2 10} : : !
e
[=]
= 8t
g 6l
E
& 2f
=l
N o I . L :
-40 -20 0 20 40

SW XSAPR

20 40

0
ALL XSAPR

-40 =20 0 20 40
N/S displacement from the CF (km)
0 8 16 24 32 40 43 56 64 72
Corrected refl fac (dBz)

Z displacement from the CF (km) Z displacement from the CF (km)

Py-ART and LROSE

LROSE: Application stack
performance

* A cloud of command line
driven routines for data
analysis and interactive
display.

e Performance driven.

e All the way from instrument
to application.

* Uses community standard
file formats.

Py-ART: Interactive
environment flexibility

* A library of python
importable modules.

* From saved radial data
(looking at radar spectra
support).

* Based on common python
objects.

» Flexibility and ease driven.

Synergies and commonalities

The two projects have common goals: reading, correcting,
mapping, displaying and analyzing radial data.
Even though we have two different approaches we are

building a strong collaboration about building a core set of
libraries that can be used in either environment.

The extensibility of Python can be leveraged to bring in C
code from LROSE.

LROSE can leverage Python tools to build displays (eg Py-
SOLO)

Synergies and commonalities

The two projects have common goals: reading, correcting,
mapping, displaying and analyzing radial data.
Even though we have two different approaches we are

building a strong collaboration about building a core set of
libraries that can be used in either environment.

The extensibility of Python can be leveraged to bring in C
code from LROSE.

LROSE can leverage Python tools to build displays (eg Py-

L9 Our goals are simples
Build conumumnity sofiware to lower
the barriers to entry for radar science

A

{EART

ety
h

Future directions in (li/ra)dar software

« Radar/Lidar systems are producing more data with greater bit depth
and sampling.

« This data is a classic example of “big data” not due, necessarily, to the
size but also due to the geometric complexity.

« Lowering barriers to access 1s essential for progress.

« For large radar datasets a barrier is also compute power and 10. Need
to take code to the data.

» The good news i1s that radial data is particularly amenable to
parallelization.

Future directions in (li/ra)dar software

« Radar/Lidar systems are producing more data with greater bit depth
and sampling.

» This data is a classic example of “big data” not due, necessarily, to the
size but also due to the geometric complexity.

« Lowering barriers to access is essential for progress.

« For large radar datasets a barrier 1s also compute power and 10. Need
to take code to the data.

e The good news is that radial data 1s particularly amenable to
parallelization.

The NEXIRAD radar record is over 0.SPB
and growing (faster!).

&

3

{EART :

g
LN

Conclusions

« There is a need for community radial software projects.

 LROSE and Py-ART represent two philosophies for going
forward working in close collaboration.

» Aspects of LROSE are available and Py-ART will be
released later in April.

Coming Sooms httpssl@thubmmlARMaD@E/pym]

hitps//vwww.col ucaredu/
hitp://wwwralucaredu/projects/titan/docs/radis

CLIMATE RESEARCH FACILITY

A
éART .
OB
¥

