unidaTa

Making earth science data more accessible:
experience with chunking

Russ Rew, Unidata
UCAR Software Engineering Assembly

W £ UCAR RuSAR

What’s the Problem?

versions of the
data, what’s the
best you can do? X—> X —>

Time range access Spatial access
// : ~ / \ - N \

Can large / ’ . \
multidimensional / i E \
datasets be ! H T “““““““
organized for fast T / 7 7 5 \
and flexible 2 } ! A R ——
access? _,'3'?] E o s

]] / f i \
Without multiple A : N

&,
W
Y——?

Conventional storage layout Time varying fastest Time varying slowest

Access a time series Fast Slow

Access a spatial slice Slow Fast

with ...

[)Aat:

-
Goal is to solve
what looks like
a little problem
that becomes
more serious

Real data, conventional storage

NCEP North American Regional Reanalysis
float 200mb_ TMP(time=98128, y=277, x=349)

9.5 billion values
38 GB of data

8.5 GB compressed

time—>
time—>

SN

AN

)

9
X—> X—>
Time varying fastest Time varying slowest
Access a time series 0.013 sec 200 sec
Access a spatial slice 180 sec 0.012 sec

*Single file access time averaged over 100 independent queries, after clearing disk caches. 7200 rpm disk.

Why this example?

Pretty Big Data: copying on a desktop platform takes
minutes, not seconds (13.3 min disk, 4.0 min SSD)

Multidimensional and gridded: increasingly typical of
earth science data

Three dimensions: usefully generalizable to higher
dimensions

Multiple plausible access patterns: typical of
important datasets

Big dimensions: large performance differences

What's Chunking?

index order chunked

Storing data in multidimensional "chunks" along each
dimension to provide balanced access

Speeds up slow accesses

Slows down fast accesses

Benefits of chunking

Performance gains for server-side subsetting
Sparse data: empty chunks are not stored

Efficient compression: only compress or uncompress
chunks that are accessed

Efficient appending: along multiple dimensions
Efficient use of cache: for accessing adjacent slices
Supports unanticipated access patterns

Obstacles to use of chunking

Rechunking large datasets takes time

— Either get it right when data created, or

— Be willing to rechunk later, based on usage

No optimal chunk sizes and shapes for arbitrary
access patterns

Software to rechunk big datasets is available, but
defaults work poorly for some common cases

Specific guidance for how to choose good chunk
shapes for multiple access patterns is lacking

Importance of chunk shapes

Example: float 200mb_ TMP (time=98128, y=277, x=349)

Storage layout, Read time Read horizontal Performance
chunk shapes series slice bias: (slowest /
(seconds) (seconds) fastest)
Contiguous, for time series 0.013 180 14,000
Contiguous, for spatial slices 200 0.012 17,000
4MB chunks, 1032 x 29 x 35 3.3 3.3 1.0
1MB chunks, 516 x 20 x 25 3.1 3.2 1.0
8 KB chunks, 46 x 6 x 7 1.3 (*31) 1.2 (*3.2) 1.1 (*9.7)
4 KB chunks, 33 x5 x 6 1.6 (*38) 1.4 (*3.3) 1.1 (*12)

Average for 256 independent reads. * 15t read much slower, due to many small chunks?

Chunk shapes

In 2-D, want chunks to be same shape as data domain to get
same number of chunks in each direction of access

2-dimensional analog of chunking is too simple for common
use case of 1- and (n-1)-D access in an n-dimensional dataset

In 1-D and (n-1)-D access, need to divide chunks read per
access equally between 1-D and (n-1)-D domains

For 3-D use case example, balancing 1-D and 2-D accesses:
— Let number of chunks along each dimension be ,n.,

— Let NV = total number of chunks =

— by v by x chunk shape should be integral, near

by by
More detailed guidance in Unidata’s Developer’s Blog

Computing chunk shapes

Definition: chunk_shape (varShape, valSize=4, chunkSize=4096)
Return a good chunk shape for an n-dimensional variable,
assuming balanced 1D/(n-1)D access
varShape -- list of variable dimension sizes
chunkSize -- maximum chunksize desired, in bytes (default 4096)
valSize -- size of each data value, in bytes (default 4)

>>> chunk_shape([98128, 277, 349], chunkSize = 2**22)
[1032, 29, 35]

>>> chunk_shape([98128, 277, 349], chunkSize = 8192)
[46, 6, 7]

Chunking transparency

Only creators of a dataset need to be concerned with
chunk shapes and sizes

Like compression, chunking can be specified per
variable for netCDF-4 classic model data

Chunking and compression are invisible when reading
data, except for performance, because implemented
in access libraries

Rechunking and compression supported by nccopy or
h5repack utilities

Example: rechunk foo.nc to netCDF-4 classic model

nccopy —c time/46,y/6,x/7 contig.nc chunked.nc

Chunking and compression

In using netCDF or HDF5 libraries, a chunk is an
indivisible unit of disk access, compression, filters, and

caching
In general, larger chunks mean better compression

Smaller chunks improve access times for compressed
data, due to less computation for uncompression

Including compression introduces caching issues

Chunk size

small chunks large chunks

faster read access slower read access
less compression more compression
slower to create faster to create
greater chunk overhead less chunk overhead

Chunk size should be at least the size of one disk block
Common disk block sizes are 4KB, 1MB, or 4MB

Chunk shape may be more important than chunk size for
balanced and flexible access in multiple ways

Many small chunks incur significant 1-time overhead on open

To re-chunk large datasets, it helps to have lots of memory,
SSD

How long does rechunking take?

Example: float 200mb_ TMP (time=98128, y=277, x=349)

Destination chunks nccopy: h5repack:
disk, SSD disk, SSD
(minutes) (minutes)
4MB chunks, 1032 x 29 x 35 7,4 99, 38
1MB chunks, 516 x 20 x 25 10, 10 134, 43
8 KB chunks, 46 x 6 x 7 11, 10 ?, 46

4 KB chunks, 33 x5x 6 12, 14 ?,49

Justifying rechunking

* Rechunking benefits versus cost:

— Ridiculously slow accesses become 100x faster: minutes to
seconds

— Very fast accesses become 100x slower: msec to seconds
— 50% of each becomes 100x faster: minutes to seconds

* Consider zopfli zlib-compatible compression ...
— Takes 100x as long to compress as zlib
— Compresses 5% better than zlib

— Benefits worth cost for important data: smaller, faster,
cheaper access from server

SSD and chunking

Serial access with SSD can be 4 or 5 times faster than spinning
disks

SSD has much faster latency, typically 75 microsecs compared
to 12 ms for a 7200 rpm disk, over 100 times faster

Using SSD with contiguous layout can make chunking data
unnecessary, because direct access is so fast

However, SSD is still too expensive for servers with large data
archives

But hybrid drives may be a good use of SSD

Timings for SSD access

Example: float 200mb_ TMP (time=98128, y=277, x=349)

Storage layout, Read time Read horizontal Performance
chunk shapes series slice bias: (slowest /
(seconds) (seconds) fastest)

Contiguous, for time series 0.00003 0.000047? 1.3
Contiguous, for spatial slices 537 0.003 ?

4 MB chunks, 1032 x 29 x 35 1.2 1.0 1.2

16 KB chunks, 64 x 8 x 8 0.5 0.3 1.5

8 KB chunks, 46 x 6 x 7 0.6 0.2 2.4

4 KB chunks, 33 x5 x 6 0.6 0.3 2.4

Note: the red timings are suspect, and probably indicate a bug

Summary: Available < Accessible

Chunking is an under-appreciated tool with multiple
benefits

By rewriting important datasets using appropriate
chunking, you can make them more useful

Proper use of chunking can support multiple
common query patterns for large datasets

Specific guidance for how to choose optimal shapes
and sizes of multidimensional chunks is becoming
more widely available

More Information

HDF5 white paper on chunking
www.hdfgroup.org/HDF5/doc/Advanced/Chunking/

Documentation of nccopy, h5repack

www.unidata.ucar.edu/netcdf/docs/nccopy-man-1.html

www.hdfgroup.org/HDF5/doc/RM/Tools.html - Tools-Repack

Good paper on chunking details

www.escholarship.org/uc/item/35201092

Unidata Developer’s Blog

www.unidata.ucar.edu/blogs/developer/en/tags/chunking

Thank you!

Benchmark details

Disk cache in memory cleared before each run

Reported average clock time to read at least 100
time ranges and spatial slices

There were no common chunks among the time
ranges or spatial slices, to avoid benefits of caching

There was still some speedup from first read to later
reads, due to disk caches not in OS memory

Used local 7200 rpm disk for most tests (44 MB/sec)
SSD was about 8x faster in sample comparison runs

Questionable chunking advice example

- - T 4
(4] |70 7% || | 2012 Unidata NetCDF Workshop > Chunking and Deflating Data with NetCDF-4

19.1 Choosing Chunksizes

How do you pick chunksizes?

e Choosing good chunksizes depends on the access patterns of your data. Are you trying
to optimize writing, reading, or both? What are the access patterns at I/O bottlenecks?

e Choose chunksizes so that the subsets of data you are accessing fit into a chunk. That is,
the chunks should be as large, or larger than, the subsets you are reading/writing.

e The chunk cache size must also be adjusted for good performance. The cache must be
large enough to hold at least one chunk.

e Setting a larger cache (for example, big enough to hold tens or hundreds of chunks) will
pay off only if the access patterns support it.

¢ On today's high-performance systems, large amounts of memory are available (both to
the user and as internal hardware caching.) This suggests that chunks and caches
should be large, and programs should take large sips of data.

