Further Interoperability of
Fortran with C

Outline

Existing Interoperability

Why new features ? (Why TS 29113 ?)

The Existing iso_c_binding Intrinsic Module
Extensions to Fortran 2008

The new ISO_Fortran_binding.h header file
— constants (to set types, attributes, return codes)
— types (to hold index values and descriptors)

— functions (to create and manipulate descriptors)

Existing Interoperability

* The Common Subset Interoperates (Clause 15)

— Kind type parameters from iso_c_binding (Table 15.2)
— Derived types and procedure interfaces declared with
bind(c)

— Fortran scalars interoperate with C variables

* Fortran value attribute where the formal parameter is a
non-pointer C variable

e Otherwise, the C formal parameter is a pointer
— Fortran 77 arrays are passed as pointers
— Anything requiring a descriptor is undefined

Why New Features?

Fortran makes use of descriptors for pointers,
allocatable variables, assumed-shape arrays

C programmers want to be able to interact
with these objects
Leads to reverse-engineering of descriptors

— Complicated #if cases on programmer’s side
— Constrains upgrades on compiler’s side

Latest (complete) draft of TS 29113 is N1885

The Existing iso_c_binding Intrinsic
Module

* Kind type parameters for C types
— See Table 15.2 in 10-007r1 (Fortran 2008)
e Constants for C control characters (\n, \t, and
the rest) (Table 15.1)
* Fortran intrinsic module procedures:
— to convert between C and Fortran pointers
— to obtain C addresses: c_loc(), c_funloc()

— to inquire: c_associated(), c_sizeof|()

Extensions to Fortran 2008

* To interoperate with C void * formal
parameters

— For example, MPI choice buffers

— Breaks the Fortran strong type system (TKR)

* To support asynchronous processing on the C
side
— Message passing, GPU programming
— C11 threading ??

Assumed Type

! assumed type dummy argument
function f£(b)

! declare b

type(*), intent(1in) :: b

! can be called as

c = f(1)

l or as

c = f(x)

Assumed Type Restrictions

Assumed type applies only to dummy
arguments and requires an explicit interface

An assumed type dummy argument can only
be passed to another assumed type dummy
argument, or to c_loc()

Assumed type is otherwise treated as
unlimited polymorphic (that is, class(*))

There is no way in Fortran to query the type

Assumed Rank

! assumed rank dummy argument
function f£(b)

! declare b

real, intent(in) :: b(..)

! can be called as

c = £f(arrayl(:))

! or as

c = £f(array3(:, :, :))

Assumed Rank Restrictions

Assumed rank applies only to dummy
arguments and requires an explicit interface

An assumed rank dummy argument can only
be passed to another assumed rank dummy
argument, or to c_loc()

Assumed rank dummy arguments may not
have the value attribute, nor be a coarray

Assumed rank dummy arguments may have
the contiguous attribute

Combined

! assumed rank & assumed type
function f£(b)

! declare b void *

type(*), intent(in) :: b(..)
! can be called as

c = f(1)

! or as

c = £(zarray3(:, :, :))

New & Improved Intrinsics

* shape(), size(), and ubound() are extended to
handle objects of assumed rank

— by returning a rank-1 array of variable size (when
called without dim=)

e the new rank() intrinsic inquires of the rank of
the object passed as an assumed rank dummy

— When passed a scalar, a zero-sized array is the
result

Fewer Restrictions on Dummy
Arguments in Bind(C) Interfaces

 An argument in an interface with bind(c) may
have the allocatable, pointer, or optional
attribute, or be an assumed-shape array

* optional and value may not appear on the
same dummy argument

 allocatable and pointer may not appear if the
type has default initialization, type bound
procedures, or a final procedure

The Asynchronous Attribute

* The asynchronous attribute existed to support
Fortran asynchronous 1/0

* Now, an asynchronous attribute may appear
on a dummy argument in a bind(c) interface

* There must be a procedure to initialize
communication and a procedure to complete
the communication

— But communication is not defined (simply, these
procedures are processor dependent)

Combining All the Above

* There is now a completely standard means for
a Fortran procedure to invoke asynchronous
MPI calls, using the MPI choice buffer (that is,
a formal parameter that is void *)

* Asingle Fortran procedure with one interface
may handle all types and ranks

— For example, MPI send and receive

ISO_Fortran_binding.h

Constants to specify Fortran attributes

— pointer, allocatable, assumed-shape
— See Table 8.1 in N1885

Types for descriptors, array extents, bounds

Macros / Functions to create, query, and
update descriptors

Inquiry of Fortran attributes
— contiguous

Return codes

CFl_index_t

* Atypedef for a sighed integer type that can
nold the result of subtracting two pointers

* |t holds an index value

* [tis used in constructing other types

CFl_dim_t

* Represents one dimension of a Fortran array

* |tis a hamed struct
— CFl_index_t lower_bound; // of the dimension
— CFl_index_t extent; // count of elements
— CFl__index_t sm; // stride in bytes

CFl_rank_t

* Atypedef for a standard integer type
* |t holds the largest rank supported

CFl_type t

* Atypedef for a standard integer type

* |t holds any type specifier
— See Table 8.2 in N1885

CFl_attribute t

* Atypedef for a standard integer type

* |t holds any attribute code
— See Table 8.1 in N1885

CFl cdesc t

A named struct named by a typedef
— contains a flexible array member

* The type of a Fortran descriptor for use in C
— void * base_addr; size_t elem_len; int version;
— CFl_rank_t rank; CFl_type t type;
— CFI_attribute _t attribute;
— CFl_dim_t dim[];

 Order requirements on sm sizes to prevent
overlap

CFl CDESC T(int)

* The int specifies the rank of the Fortran object

 The macro expands to the name of a type
suitable for defining a descriptor of the rank
specified

— a pointer to a variable so declared may be cast to
a CFl _cdesc t*

CFl MAX RANK

* A macro expanding to a standard integer type
to hold the largest rank supported

— the value must be >= 15

CFl_VERSION

* A macro expanding to an integer value that is
used to track when incompatible changes are
made to the definitions in the header file

Attribute Codes

CFl_attribute assumed
— Fortran assumed-shape array

CFl_attribute_allocatable
— Fortran allocatable variable
CFl_attribute_pointer

— Fortran pointer variable

CFl_attribute_unknown_size

— Fortran assumed-size array

Type Codes

e See Table 8.2 of N1885

* Type codes for all the usual standard C types

— including size_t, Bool, intmax_t, ptrdiff_t, void *,
pointer to function, structs

— other (when type is unspecified)

Error Codes

See Table 8.3 in N1885
CFl SUCCESSis O

Other error codes are distinct from any other
constant in the header

A processor may detect other errors

When several errors occur, which error is
reported is processor-dependent

CFl address()

Computes the address of an array element
Returns a void *

Takes a CFl cdesc_t *

Takes a CFl_index_t []

CFl establish()

* |nitializes a CFl_cdesc_t object

 Completes
— base_addr // if appropriate, or NULL
— attributes
— type
—elem_len // if appropriate, or NULL
— rank

— extents // if appropriate, or NULL

CFl allocate() / CFl deallocate()

* Allocate or deallocate a Fortran allocatable
object by the same mechanism used by the
Fortran compiler

— so it duplicates Fortran allocate and deallocate
statements

CFl is contiguous()

* Returns 1 if the object is contiguous (has the
Fortran contiguous attribute) and O otherwise

CFl section()

* Returns a CFl_cdesc_t object describing an
array section

 For example, given a CFl_cdesc_t for a rank-1
array a, returns a CFl_cdesc t for a(f: I: i)

— applies to arrays of any rank
— the rank is specified in the CFl_cdesc_t object

CFl select part()

* Given an array of derived type, returns an
array of part of it
* For example, given
type, bind(c) :: foo_t
type(goo t)::c
end type
— and a CFl_cdesc_t for type(foo t) :: a(n)
— return a CFl_cdesc_t for a(:)% c

CFl setpointer()

Associates a Fortran pointer with a target
For example, given a CFl _cdesc t describing
— type(x), pointer :: px

And a CFl_cdesc_t describing

— type(x), target :: tx

Updates the CFl _cdesc_t for px as if the
pointer assignment px => tx in Fortran

Restrictions

 Mind the Pointer Lifetimes (of course)

e >>> Don’t try to do something with Fortran
objects in Cif it can’t be done in Fortran <<<

* Don’t use names beginning with CFl_in any
file where the header is included

Further Interoperability of
Fortran with C

Dan Nagle
Thank you

